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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objectives 

Fluidized beds (FB) reactors are widely used in the polymerization industry due to their 

superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local 

overheating of polymer particles and excessive agglomeration leading to FB reactors defluidiza- 

tion still persist and limit the range of operating temperatures that can be safely achieved in 

plant-scale reactors. Many people have been worked on the modeling of FB polymerization 

reactors, and quite a few models are available in the open literature, such as the well-mixed 

model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi 

and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most 

these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior 

of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. 

Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid 

dynamics on chemical reactor performance. For single-phase flows, CFD models for turbu- 

lent reacting flows are now well understood and routinely applied to investigate complex flows 

with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing 

rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid 

FB reactors with mono-dispersed, non-cohesive solids. 

Different length scales and phenomena are involved in the polyolefin process. Fig. 1.1 

shows that the reactor diameter is on the order of meters, the particles are tens to hundreds 

of microns, the sub-fragments are on the order of hundreds of nanometers and the active site 

is even smaller, only 1-100 A. At the early stage of polymerization, single particles fragment 

into a large number of small sub-particles. The monomers and other species are transported 
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through the particle boundary layer and by a network of macropores inside the particle, and 

diffuse through the polymer phase to the active sites where the polymerization reactions occur. 

Simultaneously, the heat produced by the reaction is removed out of the particle in the opposite 

direction. Particles can also agglomerate and swarm into a big particle when the particles are 

overheated or charged. The particles can also break into small fragments if the temperature 

in the bed is too cold. Thus a broad distribution of particle sizes exist in the FB reactors, 

and segregation and mixing coexist in the bed due to the mobility of the particles. Therefore, 

the detailed mathematical modeling of polymerization FB reactors is very complex and poses 

many challenges for us: 

e Poly-dispersed polymer particles play an important role in the behavior of the reactor. 

Large particles produced by the polymerization reaction or agglomeration can migrate 

to the bottom of the bed for removal. Wnreacted particles or small partides produced 

from breakage are elutriated with the incoming gas. Local particle size distribution 

(PSD) is related with many phenomena, such as, segregation, agglomeration, breakage 

and elutriation. 

rn Heat and mass transfer to the particle surface controls the local particle temperature and 

hence the rate of agglomeration and breakage. 

a Catalyzed, free-radical polymerization chemistry occurs on the surface of the catalyst 

and is strongly influenced by mass and heat transfer to the active catalyst sites. 

All of these phenomena are highly coupled and can have a strong influence on the fluid 

dynamics (e.g., defiuidization due to particle agglomeration). 

To address these challenges, several researchers have investigated on this subject from dif- 

ferent aspects. Mckenna, Spitz, and Cokljat (1999) study the heat transfer from catalyst or 

polymer particles of different sizes during polymerization in a gas-phase reactor using CFD cal- 

culation. Their work shows that the particle shape does not have m overwhelming influence 

on convective heat-transfer coefficients. Conduction can make a significant contribution to 

heat removal for particles less than 100 pm, and particle-particle and particle-wall interaction 
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Figure 1.1 Length scales and phenomena involved in palyolefin processes. 

is important in some cases. Maggioris et al. (1998) use CFD to predict the PSD in suspen- 

sion polymer reactors, and a twc-compartment population balance model was developed for 

predicting the nonhomogeneities of droplet size in the reactor. A satisfactory agreement was 

obtained between the simulation results and experiment data. Recently, the discret;! element 

method (DEM) was used to simulate gas-phase olefin polymerization reactors (Kaneko, Shio- 

jima, and Horio, 1999). A constant particle size is used during the simulation, the temperature 

profile in the FB bed is given: and hot spot formation is observed on the distributor near the 

wall of the fluidizing column. It was also found that the degree of mixing can be used as an 

effective index to  identify and prevent hot spot formation. Later, the agglomerate phenomena 

in a FB with fine cohesive particles was studied by Kuwagi and Horio (2002) using 2D DEM 

simulation. High particle pressure and agglomerate growth in the bubble wake region and 

breakage of agglomerates in the upper region of bubbles were confirmed. The agglomerate size 

obtained by numerical simulation agreed fairly well with the one from the theoretical model. 

However, in order to completely describe all the phenomena we mentioned in the context of 

CFD, the simultaneous numerical solution of the equations for continuity, momentum, energy 

and chemical species is required. In addition, for polydisperse solids a population balance 
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equation (PBE) is also needed to describe the PSD in the beds. To our knowledge, such work 

has not been undertaken, so our objective is to develop a comprehensive model for polydisperse 

fluidized bed polymerization reactors and describe all the phenomena in the bed. 

The CFD algorithm for simulation of FB polymerization reactors is shown in Fig. 1.2. It 

is based on a multi-fluid model, such as MFIX, and combined with two user defined functions 

(UDF). As we know, most of today’s CFD calculations for gas-solid flows are carried out 

.msurning that the solid phase is monodispersed. However, in order to properly model the 

evolution of a polydisperse solid phase, the PBE must be coupled with other equations. So 

the recently formulated direct quadrature method of moments (DQMOM) is implemented in 

a multi-fluid CFD code to simulate the dynamic change of particle size in a FB reactor. The 

change of particle temperature and mass fraction due to the aggregation and breakage is also 

investigated using bivariate population balance equations. For the chemical source terms, 

if a simplified two-site copolymerization kinetic scheme is used, in situ adaptive tabulation 

(ISAT) or a chemical look-up table can be used to solve efficiently the solid species equations. 

The model for heat and mass transfer fiom/to polymer particle need to be developed for the 

multi-fluid CFD model. 

1.2 Outline 

This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed 

polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. 

Some basic theories used in our work are given in detail in Chapter 3. First, the governing 

equations and other constitutive equations for the multi-fluid model are summarized, and the 

kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of 

DQMOM for the population balance equation is given as the second section. In this section, 

monovariate population balance, bivariate population balance, aggregation and breakage equa- 

tion and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical 

methods involved in the multi-fluid model and time-splitting method are presented. Chapter 

4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. 
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Flow conditions - 

Bed geometry - 
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1 Polymerization chemistry 1 

Figure 1.2 CFD algorithm for simulation of FB polymerization reactors. 

Results for a constant aggregation and breakage kernel and a kernel developed from kinetic 

theory are shown. The effect of the aggregation success factor and the fragment distribution 

function are investigated. Chapter 5 shows the work on validation of mixing and segregation 

phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. 

The simulation results are compared with available experiment data and discrete-particle sim- 

ulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a 

Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size 

distribution are investigated through CFD simulation and validated with available experimen- 

tal data. The conclusions of this study and future work are discussed in Chapter 7. 
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CHAPTER 2. REVIEW OF FLUIDIZED BED POLYMERIZATION 

REACTORS 

2. I Fluidized Bed Polymerization Reactors 

Polyolefins, especially polypropylene (PP) and polyethylene (PE) have become the most 

popular rcsins due to the merit of low price, flexibility of molding and ease of disposal or 

recycling (Kaneko, Shiojima, and Horio, 1999). The global PP market is one of the fastest 

growing industries and the production exceeds 30 million tons in 2000 throughout the world. A 

lot of PE products including low density polyethylene (LDPE), linear low density polyethylene 

(LLDPE) , ethylene-propylene rubber (EPR) and high density polyethylene (HDPE) are widely 

used in our daily life and industrial processes. Nowadays, most polyolefin polymerization 

processes are executed in a liquid- or gas-phase reactor or a combination of both. Three 

major industrial processes for the production of PP and PE are compared in the Table 2.1. 

The reactor type, reaction temperature, operation pressure and other reaction parameters are 

listed for the three processes: the gas-phase Novolen PP process, the gas- phase Unipol PE 

process and liquid-pool Spheripol PP process. Compared to the conventional liquid slurry 

reactor, FB polymerization reactors have more advantages due to such reasons as: capability 

of continuous operation and transport of solids in and out of the bed; high heat and mass 

transfer rate from gas to particle leading to fast reaction and uniform temperature in the bed; 

no need for drying and separation of polymers from solvents; operation at lower pressure and 

moderate temperature and better heat removal. 

In a catalytic gas-phase olefine polymerization fluidized bed reactor, small catalyst particles 

(usually 20-80 pm) are continuously fed into the reactor at a point above the gas distributor, 

and react with the incoming monomer gas to produce a broad size distribution of polymer 
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particles. At the early stage of polymerization, the catalyst particles fragment into a large 

number of small particles (see Fig 2.1)) which are quickly encapsulated by the newly-formed 

polymer and grow continuously, reaching a typical size of 200-3000 ,urn. Due to the differences 

in the polymer particle sizes, segregation occurs and fully-grown polymer particles migrate 

to the bottom where they are removed from the reactor as soon as reasonable conversions 

have been achieved. The smaller prcpolymerized particles and fresh catalyst particles tend 

to migrate to the upper portions of the reactor and continue to react with monomers. The 

recycled and make-up monomer feed streams are continuously fed t o  the reactor. An external 

heat exchange is used to remove the polymerization heat from the recycled gas stream. The 

schematic representation of a polymerization fluidized bed reactor unit is shown in Fig. 2.2. 

Usually, industrial FB polymerization reactors operate at temperatures of 348-383 K and 

pressures of 20-40 bar (Xie, McAuley, Hsu, and Bacon, 1994). The single-pass monomer 

conversion in the FB polymerization reactors is low, only 2% to 5 %, whereas the overall 

monomer conversion can be as high as 98 % (McAuley, Talbot, and Harris, 1994). 

Because polymerization is exothermic, the temperature of particles in the fluidized bed 

tends to increase and sometimes it will rise above the melting point of the polymer, then 

agglomeration occurs and small particles stick together and form lumps in the beds which may 

then cause defluidization. On the opposite situation, if the bed is too cold, the particles can 

become brittle and may fracture forming small fragments that elutriate with the gas. Thus the 

PSD in the bed is related to a couple of phenomena: particle growth, particle agglomeration; 

breakage and elutriation. 

2.2 Simplified Kinetic Mechanism of Olefin Copolymerization 

Hutchinson, Chen, and Ray (1992) proposed a comprehensive multisite kinetic model for 

the copolymerization of olefins over heterogeneous Ziegler-Natta (Z-N) catalysts. In here, a 

simplified two-site copolymerization scheme (Hatzantonis et al., 2000) is presented t o  describe 

the molecular and compositional developments in a FB polymerization reactor. This scheme 

includes a series of elementary reactions, namely, site activation, chain propagation, site deacti- 
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Figure 2.1 The simplified picture of a polymer particle with catalyst frag- 
ments. 

vation, and chain transfer. In general, each site type is associated with different rate constants 

€or the elementary reactions. Pseudo kinetic rate constants are used in the development of 

model. In what follows, the subscript k refers to the different site types, and k = 1,2. 

Activation of Active Sites 

Potential active sites of type k undergo a formation reaction with the heterogeneous 2-N 

catalysts. This reaction can be described as: 

s; + [A] % Pt,  

where S,” is a potential catalyst active site of type k, and Pt  is an catalyst active site of type 

IC with no attached monomer, or a vacant active site of type k. [A] is a cocatalyst site, usualIy 

it is Aluminum AIkyl. 
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t 

Figure 2.2 Schematic representation of a polymerization fluidized bed re- 
actor unit 

Initiation of Active Site and Propagation 

The newly formed sites Pt  can react with monomers ([MI can be either ethylene or 1-butene 

or both, in OUT work only ethylene is considered.) and form a living polymer chain 

Pf is a living polymer chain of length one, then the living polymer chains can grow by the 

following propagation reactions, 
kk 

I?: + [MI t P!+p (2.3) 

Pk is a living polymer chain of length n with terminal monomer attached to the active center 

of type k. 
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Deactivation Reactions 

Active sites may decay spontaneously t o  form dead sites and dead polymer chains 

where D t  is a dead polymer segment of length n which can not undergo any further reaction 

and C; is deactivated IC catalyst active site. 

Chain Transfer Reactions 

Most dead polymer chains are produced by chain transfer reactions. These reactions occur 

with monomer, hydrogen and as well, it can happen spontaneously. Hydrogen is usually added 

to industrial F3 polymerization reactor to make linear polyethylene and then control the 

molecular weight of the produced polymers. 

Spontaneous: P! 2 Pt  + LI;, (2.5) 

By hydrogen(H2) : E!! + [Hz] 2 Po" + Dk, (2.6) 

By monomer(M) : + [MI 4 Pf + D:. (2-7) 
kt M 

Note that transfer reactions with monomer produce living polymer chains of length one P . ,  

which has the same reactive characteristics as the sites produced by site initiation, and it also 

can propagate to form new polymer chains. 

In order to formulate a practical kinetic model, the method of moments is often used to 

reduce equations into a low-order system, which can easily be solved (Hatzantonis et al., 2000). 

All the kinetic rate constants in the equations can be expressed as, I; = ko exp(-E,/RT), where 

ko, E,, R and T are the pre-exponential factor, activation energy, ideal gas constant and solid 

absolute temperature. 
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CHAPTER 3. BASIC THEORY AND NUMERICAL METHODS 

3.1 Multi-Fluid Continuum Model 

In the last few decades considerable progress has been made in the area of hydrodynamic 

modelling of gas-solid flow. Generally speaking two different classes of models can be distin- 

guished, namely discrete particle (Lagrangian) models and continuum (Eulerian) models. 

The Newtonian equations of motion are solved for each individual solid particle by using 

discrete particle models, thus the trajectory of every particle can be tracked. The interactions 

between the particles can be described by either the soft-sphere model (Tsuji et al., 1993) 

or by the hard-sphere model (Boomans et al., 1996). For the soft-sphere model, contact 

forces between the particles are calculated from the overlap between the particles, however, 

for the hard-sphere model, the particles are assumed to interact through instantaneous, binary 

collisions. The drawbacks of the Lagrangian approach are the larger memory requirements and 

the long calculation time, and empirical relations are required to calculate the fluid-particle 

interaction unless the continuous phase is described using direct numerical simulations (DNS) . 

Alternately, Eulerian models treat both the gas phase and the soBd phases as continu- 

ous and fully interpenetrating phases. The equations employed are a generalization of the 

Navier-Stokes equations for interacting continua. Owing to the continuum representation of 

-- the particulate phase, closure relations for the solid stress tensor and the fluid-particle drag 

are required to describe the rheology of the soIid phase. In most recent years, kinetic theory of 

granular flow extended from classical gas kinetic theory has been incorporated (Kuipers et al., 

1992; Gidaspow, 1994; Balzer et al., 1995). Due to the less Computation time, the Eulerian 

method is still the only feasible approach for performing simulations of an industrial scale 

gas-solid flow system and has been widely used for the gas-solid simulations. 
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Since there are many types of multiphase flows and different flow regimes exist, general 

applicable Eulerian models and methods are not available. To date, there is even still no 

agreement on the governing equations. In addition, the constitutive relations for the solids 

phase stress tensor and the interphase momentum transfer are still partially empirical (van 

Wachem et al., 2001). Two different sets of governing equations for the continuurn models 

originated from the works of Anderson and Jackson (1967) and Ishii (1975) exist. From the 

work of van Wachem et al. (2001), it is shown that Ishii’s (1975) treatment is appropriate 

for a dispersed phase consisting of fluid droplets, and that Anderson and Jackson’s (1967) 

treatment is appropriate for a dispersed phase consisting of solid particles. Modifications need 

to be made for the Ishii’s (1975) equations to describe gas-solid flows (such as Eriwald et al. 

(1996)’s work). The results from both formulations for the governing equations are similar in 

terms of the macroscopic flow behavior, but differ on a local scale such as individual bubbles 

or localized solids distribution. 

As follows, firstly the modified governing equations from Ishii’s (1975) work are given, and 

then several constitutive relations, such as gas-phase equation of sate, fluid-solids and solids- 

solids momentum, mass and heat transfer, and fluid and solids phase stress tensor are listed. 

The kinetic theory of granular flow is discussed as last part. 

3.1.1 Governing Equations 

The multi-fluid continuum model assumes that different phases behave as interpenetrating 

continua and the instantaneous variables are averaged over a region that is large compared 

with the particle spacing but much smaller than the flow domain. Multiple solid phases are 

accounted for describing phenomena such as segregation and elutriation. Each particle phase is 

characterized by a unique diameter, density and other properties. A new field variable, phasic 

volume fractions, are introduced to track the fraction of the averaging volume occupied by 

various phases. By definition, the volume fractions of all of the phases must sum to one: 

N 

ff=l 
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where N is the total number of solid phase, cg and E,& are the volume fractions of the gas 

and ath solid phases, respectively. The gas phasic volume fraction is also known as the void 

fiaction. 

The continuity equations for the gas and solid phases are 

where Pg and psa are the gas- and solid-phase densities, ug and usa are the gas- and solid-phase 

velocities, and Kqa is the mass-transfer rate from the gas to the ath solid phase due to the 

chemical reactions or physical processes, such as evaporation. 

The momentum equations for the gas and solid phases are 

and 
N 8 

at - (Es,Ps&s,) + v * ( ~ S f f P S c Y ~ S c U ~ , , )  = v . bsa  - fga + fpa + E s a P s a g ,  (3.5) 
B=l,P#C-X 

where crg and crsa are the gas- and solid-phase stress tensors, fgcy is the interaction force 

between the gas and the ath solid phase, fp, is the interaiction force or momentum transfer 

between the Pth and ath solid phases, and g is the gravity vector. 

The energy balance for the gas phase is written in term of the gas temperature T' as: 

where 9s is the gas-phase conductive heat flux, HgLy describes the interphase heat transfer 

between gas and cdth solids, and AH,, is the heat of reaction in the gas phase. The last term 

accounts for heat Ioss to the wall, and it will only apply to gas in the boundary layer near the 

wall. 

The energy balance equations for the solid phases are written in term of the cdth solid phase 

temperature Tsa as: 
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where qsa is the solid-phase conductive heat flux, and AH,,, is the heat of reaction in the 

solid-phase. In the formulation of energy balance equations (3.6) and (3.7), heat transfer 

between different solid phases and radiative heat transfer are ignored. 

The gas and solids phases may contain an arbitrary number of chemical species, N, and 

Nsa. The species equations for the gas phase and soIid phases are: 

where Xg, and X,,, are the mass fractions of gas- and solid-phase species. Rgn and R,,, are 

the rate of formation of gas and solid-phase species n. M,,, is the mass-transfer rate from the 

gas to ath solid phase for species n. 

3.1.2 Constitutive Relations 

To proceed further toward solving practical problems of interest, it is necessary to supply 

specific constitutive relations to complete the governing equations. This challenging task is 

xcomplished by using a variety of approaches, ranging from empirical information to kinetic 

theory. Many researchers have worked on it and different closure relations based on the different 

assumptions are given in the literature and commercial codes. The closure relations used in 

this research are listed below. 

Gas Phase Equation of State 

The gas density p,  is related to the temperature Tg and the pressure Pg by the idea gas 

law: 

where M, is the average molecular weight of gas and R is the gas constant. For an incom- 

pressible phase the density is assumed to be constant. 
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Gas-Solids Momentum Transfer 

Fkom the studies on the dynamics of a single particle in a fluid, many mechanisms contribute 

to the momentum transfer term fga (Fan and Zhu, 1998). In the present work, only the 

buoyancy, caused by the fluid pressure gradient, drag force, caused by the velocity difference 

between the gas-solid phase and momentum transfer due to mass transfer between the phases 

are accounted for. Thus the gas-solids momentum transfer can be written as: 

(3.10) 

where the first term on the right-hand side describes buoyancy, the second term is drag force. 

and the last term is momentum transfer due to gas-solid mass transfer M,,, and 

(3.11) 

Typically, the gas-solid drag coefficient Fga is obtained experimentally from pressure drop 

measurements in fixed, fluidized, or settling beds. The drag models which are more widely 

used are Syamlal-O’Brien model, Wen-Yu model and Gidaspow model. The detail information 

on the comparison of these three drag models on the flow patter can be found in Taghipour’s 

work (2005). 

In Syamlal-O’Brien model (Syamlal, Rogers, and O’Brien, 1993), the gas-solid drag coeffi- 

cient derived by SchaefFer (1987) is used: 

(3.12) 

where dprr is the particle diameter and V,, is the terminal velocity correlation for the ath solid 

phase. A closed formula for V,, can be derived from a correlation developed by Garside and 

Al-Dibouni (1977): 

1 
V,., = - 2 

- 0.06Re, + J(0.06Re,)2 + 0.12Rea(2B - A )  + Az] , (3.13) 

where 

4.14 , (3.14) 
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0 . 8 ~ i . ~ ~  if cg 5 0.85, 

E ~ . ~ ~  9 if > 0.85. 

The Reynolds number of the ath solid phase is given by: 

The single-sphere drag function has the simple formula proposed by Dalla Valle (1948): 

In the Wen-Yu drag model, the gas-solid drag coefficient is (Wen and Yu, 1966): 

and CD has a different function from Syamlal-O'Brien's 

0.44 

model, 

if EgRep, 5 1000 

if EgRep, > 1000 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Gidaspow (1994) follows Wen and Yu model for gas volume fraction larger than 0.8, but 

apply Ergun equation for gas volume fraction lower than 0.8. The gas-solid drag coefficient for 

Gidaspow model is: 

(3.20) 

Solids-Solids Momentum Transfer 

Compared to gas-solids momentum transfer, much less is known about solids-solids mo- 

mentum transfer. Only drag force between solids phases and momentum transfer due to mass 

transfer are presented. In the present work, the soBds-solids momentum transfer f p a  can be 

written as: 

(3.21) 
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where MD, is the mass transfer from solids phase-P to solid phase-a, and 

Usually momentum transfer 

1 for Moa < 0, 

0 for Moa 2 0. 
spry == (3.22) 

due to mass transfer is small compared to drag force, so it can be 

ignored in most simulations. 

The drag coefficient Fpa is necessary to correctly predict segregation among particles of 

different sizes, and it has an expression of the form 

G o a  7T= 
+ CiP*. (3.23) 3 0  +e>($  + ~ ) E s a P s a ~ s P P s P ( d p P  + d,,)2gopnlusp - U s a I  

W P s & p  + P s a $ L )  
FpLy = 

The first term is obtained from kinetic theory for granular flow, where e and Cfpp are the 

coefficient of restitution and coefficient of friction between particles, respectively. Coefficient 

of restitution e accounts for the inelasticity of collisions between particles, and e would be 

equal to ,one for perfectly elastic collisions. However, usually the granular collisions are slightly 

inelastic, so it is between aero and one. The radial distribution function gop, describes the 

probability of finding two particles in close proximity. This function is equal to one for very 

low concentrations of solid particles but it increases due to the increase volume occupied by the 

solids particles. This function has many possible definitions arid the model derived by Lebowitz 

(1964) for a mixture of hard spheres is used: 

(3.24) 

The second term ClP* represents the “hindrance force” due to enduring contact in a closed 

packed system. P” is the total solid stress tensor in plastic regime, it will be explained in the 

later section of solid phase stress tensor. (71 is a constant. It depends on the segregation rate 

between two solid phases, and usually, it can be obtained from experiment data. E; is the 

close-packed-bed void fraction or minimum void fraction. 
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Gas Phase Stress tensor 

The stress tensor for the gas phase is related to the pressure and viscous stress tensor T~ 

(3.25) 

The viscous stress tensor is assumed to have a Newtonian form and can be expressed as: 

(3.26) 

where p g  is molecular viscosity for gas phase, I is the identity tensor and D, is the strain rate 

tensor for the gas phase, and 
1 

Dg = 5 [VU, + . (3.27) 

Solids Phase Stress tensor 

Two different methods have been used to calculate the solids phase stress tensor. In the 

earlier studies of the solid stress tensor, the total solid stress tensor is expressed as the sum 

of kinetic, collision and frictional tensors. In the dilute part of granular flow, solid particles 

randomly fluctuate and translate, this form of viscous dissipation and stress is named kinetic 

effect. When the concentration of solid particles increases, in addition to dissipation, solid 

particles can collide shortly with other particles and thus enhance dissipation and stress, and 

this kind of effect is called collision effect. At very high concentrations (usually more than 50 

% in volume), particles start to endure long, sliding and rubbing contacts, which gives rise to a 

totally different stress from lcinetic and collision stress, and it is called frictionaI effect. These 

three main forms of stress tensors in a granular flow are shown in Fig. 3.1 (Dartevelle, 2003). 

Using this method, kinetic and collision stress is calculated from kinetic theory of granular 

flow, and the frictional tensor is specified as a function of void fraction that becomes very large 

as the void fraction approaches the packed-bed void fraction E:. The actually magnitude of 

the term itself is not very important, as long as it prevents the void fraction from becoming 

unphysically small. 
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Figure 3.1 Three main forms of viscous dissipation in a granular flow 

In order to avoid the need to specify an arbitrary frictional stress tensor for the solid phase, 

Syarnlal and 0’Brien (1988) suggest to  treat the granular media as incompressible fluid at a 

certain critica1 void fraction (or maximum packed-bed void fraction) E:. In such a formulation, 

a solid pressure is calculated so as to keep the void fraction from becoming less than the packed- 

bed void fraction. This pressure becomes zero when the void fraction becomes greater than 

the packed-bed void fraction. Using this method, granular flow is classified into two different 

regions: a viscous or rapidly shearing regime, in which stresses arise because of collisional or 

translational transfer of momentum (similar to kinetic and collisional regime), and a plastic or 

slowly shearing granular flow, in which stresses arise due to Coulomb friction between solids 

particle in enduring contact (similar to  the frictional regime). Two entirely different approaches 

are used to describe the solid stress tensor in these two flow regimes, and they are “switched” 

at a critical packing-bed void fraction E:, 

(3.28) 
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Psa is the solid pressure and T,, is the viscous stress in the oth solids phase. The superscript 

p stands for plastic regime and II for viscous regime. The granular stress tensor in the viscous 

regime is based on the kinetic theory for.granular flow. The granular pressure and stress in 

the viscous regime are given by, 

and 

(3.29) 

(3.30) 

whcre 0, is the granular temperature for the at' solid phase and the detailed information of 

about computing this term will be discussed in Sec. 3.1.3. D,, is the strain rate tensor and is 

given by: 
1 
2 D,, = - [vu,, + . (3.31) 

The shear viscosity pi, and second coefficient of viscosity for the ath solid phase A& are 

expressed as: 

(3.32) 

(3.33) 

Kl,, Kza, K3, are constants and they are derived from kinetic theory for granular flow. The 

formulas are: 

(3.34) 

(3.35) 

(3.36) 

In the plastic regime, the stresses are usually described by theories from the study of soil 

mechanics. An arbitrary function that allows a certain amount of compressibility in the solid 

phase represents the solid pressure term in the plastic regime: 

Ffff = EsaP*, (3.37) 
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where P* is represented by an empirical power low: 

10 (3.38) P* = 10 25 (€; - E g )  . 

The solid stress tensor is calculated from a simpler model proposed by (Schaeffer, 1987): 

T:a = 2PgyDsLY, (3.39) 

where 

(3.40) 

and $ is the angle of internal friction, usually it is between 15' or 45". IZD is the second 

invariant of the deviator of the strain rate tensor, and it can be expressed as: 

Gas-Solids Heat Transfer 

The heat transfer between the gas and solids is assumed to be a function of the temperature 

difference: 

Hga = rgff (Tg - Tsa) 1 (3.42) 

where -yga is the overall heat-transfer coefficient. The latter can be related to a solid-side 

coefficient (ya)  and a gas-side coefficient (yg) by 

(3.43) 

The gas-side heat-transfer coefficient is corrected from the coefficient r," by adding the influence 

of the interphase mass transfer, 

(3.44) 

and the coefficient r," is related to the particle Nusselt number (Syamlal et al., 1993): 

Nu, = (7 - 1 0 ~ ~  + 5~;)(1+ 0.7Ret2Pr1/3) + (1.33 - 2 . 4 ~ ~  + l . Z ! ~ z ) R e ; ~ P r ~ / ~ ,  (3.45) 



23 

(3.46) 

The Prandtl number is defined as: 

(3.47) CPgk PT = -, 
kg 

and Reynolds number Re, is defined in Eq. 3.16. The solid-side heat-transfer coefficient ya 

can be estimated as (Yao et al., 2003): 

(3.48) 

where IC, and k,, are the thermal conductivities of the gas and solid phase, respectively. 

Gas-Solids Mass Transfer 

The mass-transfer rate between gas and solids for species n can be expressed as 

(3.49) 

where tcgGgcYn is the overall mass-transfer coefficient for species n, which can be related to a 

solid-side coefficient ( f i a n )  and a gas-side coefficient ( f i g ) .  Usually the gas-side mass transfer 

coefficient can be ignored, only a model for the solid-side coefficient need to be derived. After 

performing a lumped mass-transfer analysis (Yao et al., 2003)) this model can be expressed as 

where D, is the diffusivity of species n in the solid phase. 

0 ther Relations 

The conductive heat flux for the gas phase is described by Fourierk Law: 

(3.50) 

(3.51) 

For solids phases, the solid-side conductive heat flux is necessary to calculate bed-to-wall heat 

coefficients and the conductive heat flux is assumed to have a similar form to that in gas phase: 

(3.52) 
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For heat of reaction, the partitioning of the heat of reaction between the phases is arbitrary 

since the averaging is required to derive the hydrodynamic equations does not contain any 

information regarding the gas-solids interface. The actual chemical reactions occur in an 

interface between solids and gas phase. However the partitioning of the heat of reaction must 

be based on physical argument. For example, in most polymerization reactions, the heat of 

reaction is assigned to the solid phase. 

3.1.3 Kinetic Theory of Granular Flow 

Kinetic theory of granular flow is based on a deep analogy with the classical kinetic theory 

of dense gas. Taking the analogy, a granular temperature 0, is defined for each solid phase, 

and it is described as the specific kinetic energy of the random fluctuating component of the 

particle velocity: 

1 0, = pi} (3.53) 

where Eea is the granular fluctuating energy and C, is the random fluctuating component of 

the instantaneous velocity c, of the ath solid phase defined by 

c, = us, + c,. (3.54) 

The symbol ( ) means an ensemble averaging. Notice here, for a solids mixture, we just simply 

extend the two phase kinetic theory to multiple granular phases. More general and accurate 

kinetic theories for multi-solids phases need to be derived in the future, and recently a couple 

of researchers' work are reported (Goldschmidt, 2001). 

In the granular flow or gas-solid flow, the mechanical energy of granular flow is first trans- 

formed into random particle motion and then dissipated into internal energy. It is quite 

different horn the conventional dissipation mechanism. This general principle of dissipation in 

the granular kinetic theory is presented in Fig. 3.2. Thus a conservation of energy equation 

for this fluctuating kinetic energy is gven by 

(3.55) 
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The first term on the right hand side represents the work done by the surface forces, e.g; the 

viscous dissipation and the production of fluctuations by shear. The second term represents the 

conduction of the granular temperature, where qo, is the diffusive flux of granular temperature 

and can be defined by a Fourier type law 

where the diffusion coefficicnt for granula energy, ke, is described by 

and 

(3.56) 

(3.57) 

(3.58) 77 -..r -(1 +e) ,  

The third term -70, is the loss of granular energy due to the inelastic collisions between 

particles. It can be described as 

1 
2 

where 

(3.59) 

(3.60) 

The last term #gsa represents the dissipation rate due to the interaction between solids and gas 

phase. It can be expressed as a function of gas-solid drag coefficient: 

(3.61) 

Inserting all the constitutive relations into the granular temperature equations, for N solids 

phases, N coupled partial differential equations (PDEs) need to  be solved and it is a very 

onerous work. However, this work can be simplified by solving a single PDE that represents 

the granular energy equation for a mixture granular temperature 0. The"mixture granular 

energy equation'' is formed by summing over all particles and after some manipulation it can 

be expressed as: 

(3.62) 
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Figure 3.2 General principle of dissipation in the granular kinetic theory 

The mixture granular temperature or averaged granular temperature is defined as: 

(3.63) 

Equipartition of granular energy rnpaOa = mppOp is assumed in the derivation, where mpa is 

the mass of the particles that constitute solids phase CY. Then the granular temperature for 

ath solid phase can be obtained by 

(3.64) 

The implementation of the detailed mixture granular energy equation described by Eq. 3.62 

is still under development. Currently, an algebraic expression for granular temperature 0, 

is calculated by assuming that the granular energy is dissipated locally and neglecting the 

convection and diffusion contributions, only keeping the first term (generation term) and the 

third term (dissipation term) on the right hand side (ignoring the dissipation rate due t o  the 

interaction between solids phase and gas phase and diffusive flux of granular temperature). 
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3.2 DQMOM for Population Balance Equation 

In order to  describe the PSD in a multiphase flow, a PBE needs to be solved along with 

continuity equation, momentum equation and energy equation. Many different methods exist 

for solving the PBE and a lucid description of the mathematical and numerical issues involved 

are discussed by Ramakrishna (2000). The most direct method is the discretized population 

balance (DPB) approach or classes method (CM), in which the internal coordinate (e.g, particle 

length or volume) is discretized into a finite series of bins. The main disadvantage of this 

method is requiring a large number of classes (e.g., 20-30) to get reasonable results, so that 

the DPB method is not a feasible approach for CFD calculations. An alternative approach is 

Monte-Carlo simulations. This approach is based on the solution of the PBE in terms of its 

stochastic equivalent. A population of particles undergoes the “real” physical processes, and 

events occur according to the appropriate probabilities. The work of Smith and Matsoukas 

(1998) and Lee and M a t s o u k  (2000) give more details on this approach. Although this 

approach is theoretically applicable €or CFD application, especially for Lagrangian-Eulerian 

simulations, in order to reduce the statistical error a very large number of particles must be 

used. Due to  limitations on the computational resources, the full incorporation of Monte-Carlo 

methods with CFD codes is at the moment intractable (Madec, Falk, and Plasari, 2001, 2003). 

An attractive alternative is represented by the method of moments (MOM) where the PSD 

is tracked through its moments by integrating out the internal coordinate. The main advantage 

of MOM is that the number of scalars required is very small (Le., usually 4-6)) which makes the 

implementation in CFD codes feasible. However, due to the difficulties related with expressing 

transport equations in terms of the moments themselves, the method has not been widely 

used. This is the so-called closure problem, pointed out first by Hulburt and Katz (1964), and 

recently reviewed by Diemer and Olson (2002). As an alternative, McGraw (1997) developed 

the so-called quadrature method of moments (QMOM), which is based on the approximation 

of the’ unclosed terms by using an ad-hoc quadrature formula. The quadrature approximation 

(Le., its abscissas and weights) can be determined from the lower-order moments by resorting 

t o  the product-difference (PD) algorithm. QMOM has been extensively vaIidated for several 
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problems with different internal coordinates (Barret and Webb, 1998; Marchisio, Vigil, and 

Fox, 2003b; Marchisio, Pikturna, Fox, Vigil, and Barresi, 2003a). One of the main limitations 

of QMOM is that since the solid phase is represented through the moments of the distribution, 

the phase-average velocity of the different solid phases must be used to solve the transport 

equations for the moments. Thus, in order to use this method in the context of the multiphase 

flows, it is necessary t o  extend QMOM to handle cases where each particle size is convected 

by its own velocity. 

In order to address these issues, the DQMOM has been formulated and validated by Marchi- 

si0 and Fox (2005). DQMOM is based on the direct solution of the transport equations for 

weights and abscissas of the quadrature approximation. The calculation of the quadrature 

approximation through this direct formulation presents the advantage of being directly ap- 

plicable to multi-variate PBE (i.e., PBE with more than one internal coordinate). Moreover, 

as it will become clear below, each node of the quadrature approximation can be treated as 

a distinct solid phase. DQMOM thus offers a powerful approach for describing polydisperse 

solids undergoing segregation, growth, aggregation and breakage processes in the context of 

CFD simulations. 

As follows, the detailed derivation of DQMOM for a monovariate population balance is 

explained and then the method is applied to bivariate variables: particle size L and particle 

temperature Ts. The bivariate population balance equations can be also extended to other 

variables, such as solid mass fraction X,. Then the moment transformation of aggregation and 

breakage equation for rnonovariate and bivariate are presented in the third part. At last, the 

combination of DQMOM method with multi-fluid model is discussed. 

3.2.1 Monovariate Population Balance 

The population balance for the PSD with number density function n(L;  x, t )  can be written 

in terms of one internal variable, particle size length L,  as follows: 

an(L; x, t )  
at 

+ v . [(u,IL)n(L; x,t)] = S(L; X,t), (3.66) 
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where S(L; x, t )  represents the net rate of introduction of new particles into the system (e.g., 

due to the chemical reaction, aggregation and breakage) and (u,lL) is the mean velocity 

conditioned on the particle length L,  by definition, (u,lL = La) = us,. x is the spatial 

coordinate and t is the time. 

Using DQMOM, n(L;  x, t )  can be approximated in terms of a summation of N Dirac delta 

functions (presumed finite-mode PSD): 
N 

4 L ; x d )  = C w a ( x , t ) J [ L  - L a ( W ) l ,  (3.67) 

where w, is the weight of the delta function centered at the characteristic length La. If Eq. 3.67 

is substituted into Eq. 3.66, it is possible to derive transport equations for the N weights w, 

and the N characteristic lengths La. 

( Y = l  

The population balance in terms of the presumed finite-mode PSD becomes: 

where d'(L - La) is the first derivative of the Dirac delta function d(L - La) and after some 

manipdation, Eq. 

where 

3.68 becomes: 
N N 

d(L - La)a, - 6'(L - La)[ba - L,a,] = S(L,  T), (3.69) 
ol=l ,=l 

a(waLcy) + V - (w,L,u,,) = b,. at 

(3.70) 

(3.71) 

Moment transforms can be applied to determine the functional forms of aa and b, and 

then solving the PBE. The kth moment of the PSD is defined as 

Given that: 

l m h ( L  - L,)LkdL = L,;, 

(3.72) 

Jdw S"(L - L,)LkdL =; k(k - l)L:-', (3.73) 
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1 

2 - h  ... 2 L N  

(2N - 1 p y - 2  . . . (2N - 1pkN-2 - 

then the moment transform of Eq. 3.69 yields: 

N 

a,Lk(1 - k) + kbaL;-' = S'k,  (3.74) 
cY=1 

where 
- 
SI, = Lrn S(L)LkdL. (3.75) 

As it is possible to see from Eq. 3.74, the source terms of the transport equations of the 

N weights w, and characteristic lengths La are defincd through a linear system involving the 

first 2N moments of the population balance equation (e.g., k = 0,"- , 2 N  - 1). This linear 

system can be written in matrix form as: 

Ax = d, 

where the 2N x 2N coefficicnt matrix A = [Al is defined by 

and 

1 I 

0 . . .  0 

-L? . . .  -L; 

2( 1 - N )  L y - 1  . . . 2(1 - N)L&W-I 

* 1  0 . . .  
1 ... 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 
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A =  

If N = 1 the PSD is represented by only one delta function and A is the identity matrix. The 

- 
1 1 1 0 0 0  

0 0 0 1 1 1  

-L? -L; -Li 2LI 2L2 21;s 

-2Lf -2LZ -2Li 3L: 3L; 3L; 

-3L': -3L2 -3Li 4L; 4L; 4L; 

- -4L; -4L; -4L5 5L;' 5L$ 5Lt 

source terms are: 

(3.81) [::I = ~~1 . 
If N = 2 the PSD is described by two delta functions, and 

BY 

1 0 0 

0 0 1 1  

-q -L; 2L1 2Lz 

-2Lf -2LZ 3L; 3L; 

inverting A, we can get the sowce term: 

(3.82) 

. (3.83) 

(3.84) 



and thus inverting A 

(3.85) 

3.2.2 Bivariate Population Balance 

The PSD defined in terms of two internal coordinates - particle size L and particle tem- 

perature T can be written as: 

In this case, the governing equation for the bivariate population balance is: 

an(& T ;  x, t )  
at + v .  [(U,IL)n(L,T;x,q] = S(L,T;x,t), 

(3.86) 

(3.87) 

where S(L,  T; x ,  t )  is the source term due to aggregation, breakage and growth. If Eq. 3.86 is 

substituted into Eq. 3.87 the population balance becomes: 

N 
- 6(L - L,)S’(T - Ta)[ca - Taua] = S(L,T) ,  (3.88) 

a= 1 

where 

(3.89) 

(3.90) 

8% - + v ’ ( W a U s a )  = Ua, at 
+ v . (w*Lausa) = b,, at 

(3.91) 

In order to obtain the source terms of the transport equations for w,, w,L,, w,T,, it is 

necessary to  apply the moment transformation. We now define the moment of mixed order k, E 
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as follows: 

(3.92) 

If the moment transformation is applied to Eq. 3.88, the following system of linear equations 

is obtained: 
N C u~L~TA[X - I ;  - 21 + kb,L;-'TL + IC~L~TA-' = S ~ , J ,  (3.93) 
a=l 

where the mixed moments s k , ~  of the source term are: 

- sk,l (x, t )  = lm im S(L, T )  LkT1 dL dT.  

This linear system of 3N equations can be written in matrix form 

Ax = d, 

where the A is a square matrix of rank 3N and where 

..1'= 

(3.94) 

(3.95) 

(3.96) 

In what follows A and d will be derived for N = 1,2 ,3 .  

If N = 1 the PSD is represented by only one delta function and A is the identity matrix. 

(3.97) 

If N = 2 the PSD is described by two delta functions; since each delta function is determined by 

three parameters wa, La, T,, six mixed moments have to be calculated to close the moments. 

There is not an unique way to close the problem, as follows, in order to relate the moments 

to the ones used in monoviarate case, the orders ( k , l }  = {0,0;1,0;2,0;3,0} and (k,E} = 

(0 , l ;  3 , l )  are chosen. Note that the last moment (3,1} corresponds to particle therma1 energy. 
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A =  

- 

1 1 0 0 

0 0 1 1 

-Lf -L; 2L1 2Lz 

-2L; -2L; 3L: 3L; 

0 0 0 0 

- -3L;Ti -3L;Tz 3L;Ti 3LiT2 

and 

0 0  

0 0  

1 1  

L; L; - 

r 

1 

0 0  
O I 

L 

We can rewrite the matrix as: 

where 

and 

Ai, xi ,nd D1 are the Sam 

1 0 0  

0 0 1 1  

-Lf -L; 2L1 2L2 i -2L; -2L$ 3L; 3L; 

J 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

matrices we used in monovariate case for N = 2, thus the source 

terms a l ,  a2, bl ,  b2 have the same value as the monovariate case. The souzce term X2 = [cl, czlT 

can be obtained by solving following equation: 

AzXi + A3X2 = D2, (3.105) 
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where 

(3.106) 

(3.107) 

(3.108) 

and 
T 

D2 = [%,I %11] . (3.109) 

If N = 3, the PSD is described through three delta functions. Since each delta function 

is determined by three parameters w,, La, T,, nine mixed moments have to be used to close 

the problem. In this case, the following moments will be used to close the problem {k,l} = 

(0,O; 1,O; 2,O; 3,O; 4,O; 5,0} and {IC, 2) = (0 , l ;  l , l;  3, l ) .  Consequently the linear system has 

the following form: 

A =  

and 

1 1 

0 0 

-LY -L; 

-2L; -2L; 

-3Lf -3L$ 

-4Lf -4Li 

0 0 

-LIT1 -LzTz 

1 0 

0 1 

-L; 2L1 

-2L$ 3L? 

-3Li 4L; 

-4Li 5L;1 

0 0 

-L3T3 Tl 

0 

1 

2LZ 

3L; 

4L; 

5Li 

0 

T2 

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

1 1 1  

L1 L2 L3 

L; L; L; 

, (3.110) 

(3.11 1) 

(3.112) 
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using the same method as for N = 2 to divide the matrix to four small matrices, the source 

terms XZ = [cl, c2, c3IT can be get from the equation, 

(3.113) 

3.2.3 Aggregation and Breakage Equation 

For monovariate case, the moment transform of the source term only with aggregation and 

breakage (the molecular growth rate is zero) is: 

where 

(3.1 14) 

(3.115) 

(3.1 16) 

(3.1 17) 

BL = lw L'a(L)n(L; x, t)dL, (3.1 18) 

are respectively the moments of the birth and death rates for aggregation and breakage. The 

detail derivation about the aggregation and breakage moments can be found in the work 

of Marchisio, Vigil, and Fox (2003b). In the equation p(L,  A) is the aggregation kernel that is 

the frequency of collision of two particles with length L and A, u(L) is the breakage kernel that 

is the frequency of disruption of a particle of length L, and b(LIX) is the fragment distribution 

function that contains information on the fragments produced by a breakage event. 

Applying the quadrature approximation reported in Eq. 3.72, the source term becomes : 

N N N N 

(3.120) 
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For the bivariate case, the source term for the pure aggregation and breakage case (without 

particle growth) can be expressed as: 

(3.121) 

and the first term represents birth due to aggregation, the second term is death due to  aggre- 

gation, the third one is birth due to breakage and the last term is death due to breakage. In 

what follows, the detailed derivation to obtain these four terms is presented. 

The general aggregation-breakage equation for a homogeneous system with two variables 

(volume 21 = L3, E = X3 and energy e = TL3, e’ = T’X3) can be expressed as: 

Using the Jacobian matrix: 

(3.122) 

(3.123) 

it is possible to  change the number density function to length and temperature based one. The 

two density functions are related by: 

d ( v ,  e)dvde = n’(L3, L3T)3L5dLdT = n(L,  T)dLdT, 

d ( e ,  e’)d&’ = n’(A3, X3T’)3X5dXdT‘ = n(A, T’)dAdT’. 

Multiplying 3L5 on both sides of Eq. 3.122, we get: 

an(L, T, = B y L ,  T) - DU(L,  T )  + B y L ,  T) - Db(Ll T ) .  
at 

(3.124) 

(3.125) 
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The first term will be: 

n((L3 - X3)li3, T“ 
)n(A, T‘)dXdT’ 

3(L3 - A3)5/3 

n(X, T’)dXdT‘, (3.126) 
n((L3 - X3)1/3, T”) 

= E 2 JdmlmB( (L3  - X3)1/3,A,T’1,T’) (L3 - X 3 ) 5 / 3  

and from the conservation of the energy, we get: 

L3T - X3T’ 
L3 - A3 - 

Ti’ = 

The second term is: 

Applying the same methods, the third term and the last term are: 

If moment transformation is applied on all these four terms and we use: 

(3.127) 

(3.128) 

(3.129) 

(3.130) 

u3 d T  = -dT”, 
L3 

(3.131) 
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we get: 

D ~ , J  = Irn Jd* Jdw brn ,BLkT1n(L, T)n(A, T')dXdLdT'dT, (3.132) 

(3.133) 

(3.134) 

Employing the DQMOM method, use Eq. 3.92, the source term can be calculated as: 

- 1 N N  

&,E = - wi wj (LQ + L;)k/3pij 2 .  
2=1 j=1 

where 

(3.136) 

3.2.4 D QMOM-Multi-Fluid Model 

In order to be consistent with the variables used in the multi-fluid model, we need to  

associate the weights w, and abscissas La with the solid volume fraction and the effective 

length E ~ ~ L ~  for each solid phase. The volume fraction of each solid phase is related to the 

abscissas La and weights wa by 

and the effective length of the solid phase is 

r 4  

(3.137) 

(3.138) 
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where k, is a volumetric shape factor (e.g., for spherical particles k, =5: ~ / 6 )  and La = w,L,. 

If Eqs. 3.137 is substituted into the transport equation for the following equation can be 

obtained: 

a ( w k r )  + v . ( ~ s , P s a U s a )  at 

- 2-uu,, e . vu,] 
4 

(3.139) 

(3.140) 

The first transport equation (Eq. 3.139) represents the continuity equation for the ath solid 

phase in the presence of aggregation and breakage (cf. Eq. 3.3) but without mass transfer 

between gas and solids. It is straightforward to verify that the summation of the transport 

equations over the N solid phases leads to a null source term. This implies that aggregation 

and breakage do not change the total solid volume fraction (i.e., the solid volume fraction is 
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preserved). Thus, the source term for the gas volume fraction E~ in the presence of aggregation 

arid breakage is null, and the relative volume fractions of the different solid pliases change due 

to aggregation and breakage. The Eq. 3.140 is just a new scalar equation for particle length 

L, for each solid phase. 

For the bivariate case with two variables La and T,, a new term accounting €or the ag- 

gregation and breakage will appear on the right hand side of the solid energy equation. Rom 

Eq. 3.91, we can get: 

+ v * (w,T,u,,) at 

- 
- cff 

After some manipulation, the following equation can be obtained: 

(3.141) 

(3.142) 

Multiplying E , ~ ~ , , C ~ , ,  on both side of Eq. 3.142, the equation becomes: 

In summary, the three transport equations for solid void fraction, particle length and particle 

temperature with pure aggregation and breakage are: 
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3.3 Numerical Methods 

3.3.1 Discret k a t  ion 

A staggered grid is used for discretizing PDEs specified in the previous sections. Scalars, 

such as pressure, void fraction, temperature and mass fraction are stored at the cell centers and 

the components of the velocity vector are stored at the cell faces. The grid arrangement, for 

a computation cell is shown in Fig. 3.3. All the scalars equation are solved on the main grid, 

and the equations for the velocity vector components are solved on the staggered grids. Thus 

there are four grids used for the solution. Patankar (1980) pointed out that when pressure and 

velocity components are stored at the same grid locations, a checkerboard pressure can develop 

as an acceptable solution, so a staggered grid is used to prevent such unphysical pressure fields. 

i, j+ l ,  k t 
Variables storagc locations: 
Scalnis - cell center 

E i,j. k 
Vectors - cell face 
u i+ lR, j ,  k 
v i.j+1/2, k ' 

w i , j ,  k+1/2 

Figure 3.3 A staggered grid for a computation cell 

In multiphase flow calculation, a finite volume or control volume (CV) method is usually 

preferred, This method has an advantage to ensure the global conservation of mass, momentum 

and even energy on coarse grid (Patankar, 1980). Since a fine grid is computation expensive, 

CV method is more attractive in practical application. For the discretization, second-order 

difference is used for diffusive flux terms. The discretization of the convection terms is a more 

difficult task to do and at the early stage of the work, first-order upwind (FOU) scheme is 

used. In order to improve the accuracy and avoid numerical diffusion, high-order schemes, 

such as Superbee is preferred. The detaiIed information about Superbee and other second- 



43 

order schemes can be found in the numerical technique report by Syamlal (1998). 

3.3.2 Solution Algorithm 

A modified semi-implicit method for pressure-linked equations (SIMPLE) is used for solving 

the discretized equation for the multiphase flow. A solid volume fraction correction equation, 

instead of fluid-pressure correction equation are used, which appear to help convergence in 

the loosely packed region. Solids pressure correction equation requires that aP,/&, does 

not vanish when E~ + 0. Solids volume fraction correction equation does not have such a 

restriction, but must account for the effect of solids pressure so that the computation in the 

densely packed regions are stabilized. To speed up the code, automatic time-step adjustment 

is applied. Ths change ensures that the run progresses always at its highest execution speed. 

It can be demonstrated that this adjustment is 3-30 times faster than the constant time-step. 

The multiphase momentum equations are strongly coupled through the momentum exchange 

term, totally decoupling of the equations by calculating the inter-phase transfer term from the 

previous iteration values will make the iteration unstable or force the time step to be very 

small, so the partial elimination algorithm (PEA) of Spalding (1980) is introduced to decouple 

the equations. 

An outline of the solutiori algorithm - modified SIMPLE - is described as the follow steps: 

1. At the beginning of the time step, calculate physical properties! exchange coefficients 

and reaction rates. 

2. Calculate velocity fields uh based on a guessed pressure field. (m = 0 to M ,  0 denotes 

gas phase, I to M denote solid phases.) 

3. Calculate fluid pressure correction PJ 

4. Update fluid pressure field applying an under relaxation: Pg = Pl+wpgP& then calculate 

velocity corrections u; from Pi and update velocity fields: urn = u; + u i .  (For solids 

phases, urn calculated in this step is denoted as u;C, in Step 6.) 
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5. Calculate the gradients aP,/&, for each solid phase, which will be used in the solid 

volume correction equation, then calculate solids volume fraction correction E&, 

6.  Update solids volume fraction E, = E; + w p s ~ & , .  Under relax only in the region, where 

solids are densely packed and the solid volume fraction is increasing. Calculate solid 

velocity correction and update solid velocity fields again urn = u$ + &. 

7, Calculate the void haction by: 

8. Calculate the solid pressure from the state equation P, = Pm(c,). 

9. Calculate temperatures, species mass fractions and other scalar equations. 

10. Use the normalized residuals calculated in Steps 2, 3, 5 and 9 to check for convergence. 

If the convergence criterion is not satisfied, the iteration is continued (step 2), otherwise 

go to next tirne-step (step 1). 

3.3.3 Time-Splitting Method 

Timesplitting method, or fractional step is used to decouple the source term for the aggre- 

gation, breakage and growth from the transport equations (Eqs. 3.139, 3.140 and 3.143). The 

transport equation can be generalized as: 

- d@ = S(@)  + T(@) 
d t  

(3.147) 

where Qi represents either solid volume fraction, particle length or particle temperature, S(@) is 

the change due to aggregation, breakage and growth, and T ( @ )  is the change due to transport 

which includes convection and diffusion. Therefore, over a small time step At, the time- 

splitting method can be applied so that the different processes can be treated in separate 

fractional steps. 

1. In the first fractional time step, the change due to the convection and diffusion is solved 

for every node using equations: 

d@ 
- = T(@) with @(O) = +(t). 
d t  (3.148) 
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The solution to  Eq. 3.148 is denoted as @'(t + At). 

2. In the next fractional time step, the change due to the aggregation, breakage and growth 

term is found separately for every node using $'(t + At) as the initial condition: 

d@ - = S(@) with @(a) = @(t + At). (3.149) d t  

This equation yields Q(t + At) as the approximation of the solution of Eq, 3.147. 

The overall timesplitting method can be represented as: 

} @(t + At), aggregatiuqbreakage 

growth 
@ transport> @(t + At) (3.150) 

thus the aggregation, breakage and growth term is decoupled from the transport equation and 

can be treated with the most efficient numerical methods. For example, a stiff QDE solver or 

ISAT can be used to  solve Eq. 3.149. 

3.3.4 Grid Resolution Study 

Grid resolution results are performed in a dilute riser simulation where period boundary 

conditions are used on both vertical and horizonal directions. Period boundary conditions are 

used t o  ignore the effect of the wall and the effect of inflow and outflow. To account for gas 

movement, a periodic boundary with pressure drop 200 Pa in the vertical direction are used. 

Simulations are conducted in a 2D channel, where the width is 10 cm and the height is 40 cm 

(Fig. 3.4). The initial static bed height is 2 cm and the average solid volume fraction for the 

entire domain has a constant value of 0.03. The particle diameter used in the simulations is 

75 p7rt. Values of the other parameters are listed in Table 3.1. 

Three kinds of resolution are used in the simulation. The coarse-grid is 16x64 cells, 

and the ceIl size is 6.25 mmx 6.25 mm. The medium grid is 32x128, and the cell size is 

3.125 rnmx3.125 mm. The fine resolution is 2 mmx2 mm, and the number of grids is 50x200. 

The instantaneous contour plots of gas volume fraction, vector plots of gas velocity and con- 

tour plots of granular temperature at 5 s with different resolutions are shown in Figs. 3.5, 3.6 
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Table 3.1 Particle properties and parameters used in the simulation. 

Width, D cm 10 

Height, L crn 40 

Initial static bed height, I3 cm 2 

Particle diameter, dp CLm 75 

Particle density, p s  k / m 3  1500 

Gas density, p g  k / m 3  1.3 

Gas viscosity, ,ug kg/(m. s) 1.8 x 

Coefficient of restitution, e 0.9 

Initial gas pressure, Pg,i, kPa 101.0 

Vertical gas velocity, Vg,in cm/s 100 

Pressure drop along the height, AP Pa 200 

Initial gas temperature,Tg,in K 298 

and 3.7. The graphs show that: if a coarse grid is used, the flow is almost uniform and not 

many details of the flow are resolved. The gas velocity is also nearly uniform and there are 

not many fluctuations on the magnitude of the velocity and not any recirculation on the gas 

flow. The granular temperature is also very uniform except a few Iarge value at some region 

where the solid volume fraction is high. When the grid becomes finer, more fine bands and 

structures appear, and the length of the structures becomes finer. For the gas velocity, the gas 

recirculates in some region and more fluctuations appear. For the granular temperature, more 

small structures are also observed. It is safe to say that, when the meshes becomes finer and 

finer, the flow will continue to change and even smaller structure will be appear. 

In multiphase flow, the grid size dependence result is a qualitative measurement of the 

average bed behavior rather than a point to  point convergence. Therefore, the average slip 

velocity in vertical dircction over 13 s is compared in the Table 3.2 for three different resolutions. 

The comparison shows that, the finer grid, the longer CPU time. When the grid becomes finer, 

the average slip velocity become closer. The CPU time for the fine grid is 23 times the CPU 

time of the coarse grid. So very fine grid simulation is computationally expensive. The mean 

slip velocity on a coarse grid is much lower than the values on medium and fine grids. Due to 
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Table 3.2 Results comparison for three different resolutions. 

1 2 3 

Number of grids 16x64 32x128 50x200 

CPU time used(s) 7547 48769 170915 

Average V, over the whole domain (cm/s) 157.08 105.82 87.27 

Average Vs over the whole domain (cm/s) 127.35 69.52 49.31 

Average slip velocity at y direction (cm/s) 29.73 36.30 37.96 

the costly CPU time for the fine grid, the result from medium grid can be used as a “grid size 

independent” result. The acceptable grid is around 3 mm. 

L 

solids r 

b 
H 

Figure 3.4 The fluidized bed geometry for the simulation 
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Figure 3.5 Instantaneous contour plots of gas volume fraction at 5s with 
different resolutions. Left: coarse gird. Middle: medium grid. 
Right: fine grid. 

Figure 3.6 Instantaneous vector plots of gas velocity at 5s with different 
resolutions. Left: coarse gird. Middle: medium grid. Right: 
fine grid. 
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Figure 3.7 Instantaneous contour plots of granular temperature at 5s with 
different resolutions. Left: coarse gird. Middle: medium grid. 
Right: fine grid. 
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CHAPTER 4. APPLICATION OF DQMOM TO POLYDISPERSE 

GAS-SOLID FLUIDIZED BEDS 

4.1 Introduction 

FB polymerization reactors have been long recognized as one of the main technologies for 

producing polyolefins (PP and PE). Compared to other reactors, fluidized beds have several 

advantages such as the capability of continuous operation and transport of solids in and out of 

the bed; high heat- and mass-transfer rates from gas to particles leading to fast reaction and 

uniform temperature in the bed, and a high solids mixing rate (Fan and Zhu, 1993). Much 

research has been done on FB polymerization reactors, and most current research focuses on 

the kinetic aspects. However, from the industrial viewpoint, the behavior of these reactors 

must be studied in consideration of particle and fluid dynamics in the reactor. With the devel- 

opment of high-speed computers, CFD has become available to provide valuable information 

concerning time-dependent phenomena in the fluidized bed, such as particle overheating, ex- 

cessive agglomeration and bed defluidization. These pieces of information can help for reactor 

design, scale up, and optimization. 

FB reactors are widely used in many unit operations in the chemical, petroleum, phar- 

maceutical, agricultural, food and biochemical industries. They are well known as excellent 

reactors for their superior rates of heat and mass transfer between the gas and the solid par- 

ticles, and for the efficient mixing of reacting species. With the development of high-speed 

computers, CFD has played an important role in understanding the flow behavior of these 

Gwo-phase flow systems. As is well known, most of today’s CFD calculations for gas-solid flows 

are based on the assumption of a monodispersed solid phase (e-g., all particles have the same 

characteristic size) or on the assumption of a constant PSD (e.g, particles may be represented 



51 

by a few different siac classcs but no changes in the PSD are accountcd for (Mathiesen et al., 

2000)). However, in many practical cases solid particles belong to  a PSD, which changes con- 

tinuously according to the operating conditions. For example, in FB polyolefin reactors, smdl 

catalyst particles (e.g., 20-80 pm) are introduced at a point above the gas distributor, and 

when exposed to the gas flow containing the monomer, polymerization occurs. At the early 

stage of polymerization, the catalyst particles fragment into a large number of small particles, 

which are quickly encapsulated by the newly-formed polymer and grow continuously, reaching 

a typical size of 200-3000 pm. Due to the differences in the polymer particle sizes, segregation 

occurs and fully-grown polymer particles migrate to the bottom where they are removed from 

the reactor. The smaller pre-polymerized partides and fresh catalyst particles tend to migrate 

to the upper portions of the reactor and continue to react with ‘monomers (Kim and Choi, 

2001). In addition, under certain undesirable operating conditions (e.g., when the reactor op- 

erates close to the polymer softening temperature), polymer particles can become “sticky” and 

during collisions can form large agglomerates that can possibly undergo sintering and cause 

defluidization. In the opposite situation, if the bed is too cold, the particles can become brittle 

and may fracture forming small fragments that elutriate with the gas (Hatzantonis, Goulas, 

and Kiparissides, 1998; Yiannoulakis, Yiagopoulos, and Kiparissides, 2001). Successful CFD 

models for FB poly-olefin reactors must be capable of describing such events in order to  guide 

reactor design, scale up and optimization. 

Recent research efforts have been directed towards the investigation of the effect of the PSD 

on the fluid dynamics of FB reactors. However, most work has focused on the segregation of 

binary mixtures. van Wachem and coworkers (2001), using kinetic theory applied to a bimodal 

particle mixture, predicted the expansion of the bed with respect to a monodisperse PSD. 

Howley and Glasser (2002) examined a general continuum model for a multi-particle fluidized 

bed and provided a description of the observed phenomenon of “layer inversion” for a binary 

mixture. In the work of Hoomans et al. (1996), discrete particle simulations were used to 

investigate segregation phenomena in binary and ternary mixtures, good agreement is obtained 

in comparison to experiments. 
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In order to rigorously account for particle-related phenomena (e.g, agglomeration and 

breakage), the population balance equation (PBE) must be solved along with the continuity 

and momentum balance equations. However, attempts to incorporate the PBE into multi- 

fluid codes and to describe the evolution of the PSD in a FB reactor are very few. Recently, 

researchers have tried to couple the P3E with an Euler-Euler two-fluid model to simulate 

bubble-column reactors (Olmos et al., 2001; Lo, 1996). In their work, the dispersed phase 

was represented by ten different size groups but only the momentum balance for the mixture 

was solved due Go the significant reduction in the computing time. Thus the ten different 

classes were convected in the computational domain with the same mean algebraic velocity. 

Results showed good agreement with experiments for some hydrodynamic variables, but un- 

derestimated the global hold up. Other researchers have also tried to solve the PBE with the 

multi-fluid code simultaneously, but most work was done in gas-liquid systems, not in gas-solid 

systems (Lehr and Mewes, 2001; Venneker et al., 2002; Buwa and Ranade, 2002). 

For spatially homogeneous systems, many different methods exist for solving the PBE 

and a lucid description of the mathematical and numerical issues involved can be found in 

Ramakrishna’s book (2000). The most direct method is the DPB approach or CM, in which 

the internal coordinate (e.g, particle length or volume) is discretized into a finite series of bins. 

In order to get reasonable results, a large number of classes must be used (e.g., 20-30)) so that 

the DPB method is not a feasible approach for CFD calculations. An alternative approach 

uses Monte-Carlo -simulations. This approach is based on the solution of the PBE in terms 

of its stochastic equivalent. A population of particles undergoes the “real” physical processes, 

and events occur according to the appropriate probabilities. For more details on this approach 

see the papers of Smith and Matsoukas (1998) and Lee and Matsoukas (2000). Although this 

approach is theoreticaIly applicable, especially for Lagrangian-Eulerian simulations, in order to 

reduce the statistical error a very large number of particles must be used. Due to  limitations on 

the computational resources, the fulI incorporation of Monte-Carlo methods with CFD codes 

is at the moment intractable (Madec, FaIk, and Plasari, 2001, 2003). 

An attractive alternative is represented by the method of moments where the PSD is 
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tracked through its moments by integrating out the internal coordinate. The main advantage 

of MOM is that the number of scalars required is very small (Le., usually 4-6), which makes the 

implementation in CFD codes feasible. However, due to the difficulties related with expressing 

transport equations in terms of the moments themselves, the method has been scarcely applied. 

This is the so-called closure problem, pointed out first by Hulburt and Katz (1964)) and 

recently reviewed by Diemer and Olson (2002). As an alternative, McGraw (1997) developed 

the secalled QMOM, which is based on the approximation of the unclosed terms by using 

an ad-hoc quadrature formula. The quadrature approximation (i.e., its abscissas and weights) 

can be determined from the lower-order moments (Dette and Studden, 1997) by resorting to 

the product-difference (PD) algorithm (Gordon, 1968). QMOM has been extensively validated 

for several problems with different internal coordinates (Barret and Webb, 1998; Marchisio, 

Vigil, and Fox, 2003b; Marchisio, Pikturna, Fox, Vigil, and Barresi, 2003a). One of the main 

limitations of QMOM is that since the solid phase is represented through the moments of the 

distribution, the phaseaverage velocity of the different solid phases must be used to solve the 

transport equations for the moments. Thus, in order to  use this method in the context of the 

multiphase flows, it is necessary to extend QMOM to handle cases where each particle size is 

convected by its own velocity, 

In order to address these issues, the DQMOM has been formulated and validated by Marchi- 

si0 and Fox (2005). DQMOM is based on the direct solution of the transport equations for 

weights and abscissas of the quadrature approximation. The calculation of the quadrature 

approximation through this direct formulation presents the advantage of being directly ap- 

plicable to multi-variate PBE (Le.} PBE with more than one internal coordinate). Moreover, 

as it will become clear below, each node of the quadrature approximation can be treated as 

a distinct solid phase. DQMOM thus offers a powerful approach for describing polydisperse 

solids undergoing segregation, growth, aggregation and breakage processes in the context of 

CFD simulations. 

In this work, DQMOM is implemented in a rnulti-fluid model for simulating polydisperse 

gas-solid FB reactors. First, the general governing equations for the multi-fluid model are 
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presented in Sec. 4.2. Next, in Sec. 4.3, the implementation of aggregation and breakage in 

the DQMOM multi-fluid model is described. Finally, CFD predictions for the evolution of the 

PSD in a FB reactor with aggregation and breakage are presented in Sec. 4.4. Conclusions are 

drawn in Sec 4.5. 

4.2 The DQMOM-Multi-Fluid Model 

The detailed mathematical modeling of FB reactors is very complex since it involves inter- 

actions between closely coupled phenomena, such as multiphase flow dynamics, mass transfer, 

heat transfer, chemical reactions, and particulate processes such as aggregation and breakage. 

The simultaneous numerical solution of the equations for continuity, momentum, energy, chern- 

ical species is required. In addition, for polydisperse solids a PBE is needed. For simplicity, 

in this work the FB is assumed to be isothermal with no chemical reactions, and the PSD 

changes only due to aggregation and breakage. Thus, o w  goal is to build the link between 

the PBE and the continuity and momentum balance equations, and to obtain an economical 

but accurate method for describing the time evolution of the PSD and the gas and solids flow 

fields. In what follows, the multi-fluid model for gas-solid FB reactors is first described briefly. 

The implementation of DQMOM in the multi-fluid model is then described in some detail. 

4.2.1 Multi-Fluid Model for Gas-Solid Flow 

The multi-fluid model has been described in detail in Sec. 3.1 and here we limit the discuss 

to the equations used in this work and all the variables are same as described before. The 

continuity equation for the gas phase i s .  

In the absence of aggregation and breakage, the continuity equation of the ath solid phase is 

~ E s a P s a  

at + v * ( w - w s * )  = 0, 
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As will be shown b'elow, aggregation and breakage processes will result in additional terms on 

the right-hand side of Eq. 4.2. The momentum balance for the gas and solid phase are 

A simple Newtonian closure is used for the gas-phase stress tensor. Two entirely different 

methods are used to calculate the solid stress tensor in different regimes. For the plastic or 

slowly shearing regime, the theories from the study of soil mechanics are used. For the viscous 

or rapidly shearing regime, kinetic theory is used (Syamlal et al., 1993; Gidaspow, 1994; Lun 

et al., 1984). The constitutive relations for the gas and solids stress tensors are summarized 

in Table 4.1. Studies on the dynamics of a single particle in a fluid have shown that many 

forces contribute to the gas-solid interactions (Fan and Zhu, 1998), but in this work only the 

drag force and the buoyancy force are accounted for. The drag correlation used was derived 

by Gidaspow (1994). The interaction forces between the different solid phases are expressed 

in terms of the drag force and the enduring contact force in the plastic regime, as described by 

Syamlal et al. (1993). The gas-solid and solid-solid interaction forces are listed in Table 4.2. 

A detailed discussion of the parameters in the rnulti-fluid model can be found in Sec. 3.1. The 

reader should keep in mind that the solid stress tensor and drag formulation appearing in 

Tables 4.1 and 4.2 are slight modifications of the corresponding monodisperse solids models. 

Thus the simulation results found using other polydisperse models (Mathiesen, Solberg, and 

Hjertager, 2000; Arnarson and Willits, 1998) may differ quantitatively from those reported 

here. 
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Table 4.1 Constitutive relations for gas and solids stress tensors and the 
solids collision parameters. 

Gas stress tensor: 

b g  = - P,I + Tg 

7 9  = 2 ~ , P g D ,  - $ g P p  (Dg) 1 

D, = f [vu, + (Vug)'] 

Solids stress tensor (viscous regime): 

u" So! = -P&I + r:a 

p:", = Kla€:,~ff 

Solids collision parameters: 

m, = z d ; f f p , ,  

*to be consistent with the notation used in MFIX, the abscissa L, and dpu are equivalent, 

and represent the particle size €or the at' solid phase. 
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Table 4.2 Gas-solid and solid-solid interaction forces 

Gas-solid interaction force: 

fgff = -EsaV.Pg - Fga(Usa - Ug) 

Solid-solid interaction force: 

fpa = - ( q 3 f f  + F')(us* - U s p )  

4.2.2 Direct Quadrature Method of Moments 

A polydisperse solid phase can be modeled by a multi-variate distribution function n(L, us) 

for the characteristic particle size L and the particle velocity vector u, whose transport equation 

is (Marchisio and Fox, 2005): 

an(Ly us; x' ') + V . [u,n(L, u,; x, t)] + Vu, . [Fn(L, us; x, t )]  = S(L,  us; x, t), (4.5) at 

where x is the spatial coordinate, and t is time. In this expression, S(L, us; x, t )  is a "source" 

term that represents discontinuous jumps in property space (Le., due to aggregation and break- 

age events), whereas F is the force acting to accelerate the particles. Note that when Eq. 4.5 

is used to evaluate the size-conditioned average velocity of a particle uSa = (u,lL = La} ,  the 

size-conditioned average force (FIL = La} must be consistent with the terms on the right-hand 
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side of Eq. 4.4. In this work, we will circumvent the difficulty of finding a consistent definition 

for F by simply using Eq. 4.4 to define usa. 

Using DQMOM, the distribution function n(L, us) is approximated by a summation of N 

Dirac delta functions: 

N 

n(L, us; x, t )  = %(X, t ) W  - -L(x, t ) l+S - usa(x, t>l, (4.6) 
a=l 

where w, is the weight of the delta function centered at the characteristic particle size La and 

the characteristic velocity us*. If Eq. 4.6 is inserted into Eq. 4.5,.and a moment transformation 

is applied, it is possible to derive the transport equations for the N weights w, (zero-order 

moment) and the IV abscissas L, (first-order moment with respect to length). As noted above, 

the conditional first-order moment of us can be used to derive the momentum balances for the 

N velocities usa. However, since we will assume that Eq. 4.4 holds, the transport equations 

for the N weights w, and N abscissas L, can be found from the DQMOM representation of 

the PSD: 
+ca N 

n(L,us;x,t)dus = Cw,(x , t )d[L  - L,(x,t)]. (4.7) .I, ff=I 

n(L;x,t) = 

Integrating out the velocity in Eq. 4.5, we obtain the solid-phase PBE: 

dn(L; x, t )  
at + v * [(usIL)n(L; x, t)]  = S(L; x, t ) ,  

where (u,lL) is the mean velocity conditioned on 1;: 

and S(L; x, t )  is the size-dependent source term for aggregation and breakage. Notice that, by 

definition, (uslL = La) = usa. 

Before explaining how to obtain transport equations for the weights w, and abscissas La, 

it is important to highlight that previous validation studies of DQMOM and comparison of its 

performance with QMOM have demonstrated that by using as few as iV = 2 or 3 nodes, the 

lower-order moments of the PSD: 

(4.10) 
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are tracked with surprisingly small errors (Marchisio, Vigil, and Fox, 2003b; Marchisio, Pik- 

turna, Fox, Vigil, and Barresi, 2003a; Marchisio and Fox, 2005). The DQMOM approach has 

been tested for predicting the time evolution of the PSD under aggregation, breakage and 

molecular growth (Marchisio and Fox, 2005). The ability of the model to track the moments 

of the PSD does not give any physical meaning to the nodes of the quadrature approximation 

and, as explained in the original formulation of the model (McGraw, 1997), the weights w, 

and abscissas La are simply the quadrature approximation for the moments. However, it has 

been shown that the nodes can be thought of as different solid phases with characteristic par- 

ticle size La and velocity us,, and that the quadrature approximation'actually resembles the 

shape of the underlying PSD (Marchisio and Fox, 2005). It is thus clear that each node of the 

quadrature approximation is calculated in order to guarantee that the moments of the PSD 

are tracked with high accuracy but, at  the same time, each node is treated as a distinct solid 

phase giving the DQMOM-multi-fluid model the ability to  treat polydisperse solids. 

The rigorous derivation of the transport equations for the weights w, and weighted ab- 

scissas Le (C, = Lawc*.) is in Sec. 3.2. Here we limit our discussion to a brief review of the 

mathematical approach. The transport equations for the weights and weighted abscissas can 

be written as: 
8% 
- + v . (u,,w,) = a,, at (4.11) 

where a, and b, are defined through a linear system found from the first 2N moments (e-g., 

k = 0,. . . ,2N - 1) of the PSD. This linear system can be written in matrix form as: 

ACY == d, (4.12) 
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where the 2N x 2N coefficient matrix A = AI A2 is defined by 1 1  

and 

A2 = 

L J 

1 1 

0 0 

... 

. . .  

-L? ... -L$ 

2( 1 - N ) L y  , , . 2(1 - N ) L y - ' ]  

0 

1 

2L1 

... 

. . .  

. . .  

0 

1 

2LN 

(2N - 1 ) L y 2  . . . (2N - 1 ) L y - q  

The 2N vector of unknowns a is defined by 

and the known right-hand side is 

The source term for the kth moment giN) is defined by 

'a1 b , 

-(N) s, (x, t )  = Lrn L,SS(L; x ,  t)dL. 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

As shown below, with the DQMOM approximation the right-hand side of Eq. 4.17 is closed 

in terms of the N weights and abscissas. The superscript on siN) is a reminder that N 

nodes are used to approximate the integral. As N increases, the quadrature approximation 

will approach the exact value, albeit at a higher computational cost. 

If the abscissas La axe unique, then A will be full rank. For this case, the source terms 

for the transport equations of the weights w, and weighted lengths La can be found simply by 

inverting A in Eq. 4.12: 

Q: = A-Id. (4.18) 
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If at any point in the computational domain two abscissas are equal, then the matrix A is 

not full rank (or the matrix is singular), and therefore it is impossible to invert it. In order 

to overcome this problem, a small perturbation can be added to the abscissas to make A full 

rank. However, this method does not work very well as the number of nodes increases, and 

alternative approaches can be used. 

First of all, it is important to develop a reliable technique to detect m y  singularity of the 

matrix A. The matrix can be singular (or nearly singular) when two abscissas become too close 

to each other with an increase in the number of nodes. In such situations, the inverse of the 

matrix can still be calculated, but it has a large error. Thus a safe way to detect a singularity 

is to calculate the condition number of the matrix A when N > 3. Here, the condition number 

is defined as the ratio between the largest and smallest singular values. The reciprocal of the 

condition number can be used as a control variable to monitor singularity of the matrix A. If 

it is smaller than a small number (e.g., 1.0 x the matrix is considered singular. 

When a singularity is detected, two possible approaches can be used to overcome the 

problem. In the first one, for the computational cells where singularity happens the matrix 

A is not inverted and the source vector a is simply set to zero. In this case, convection in 

physical space will “solve” the singularity. If the second approach is used, the source vector 

a is estimated from the average of the source vectors from neighboring cells. However it is 

important to highlight that the frequency of this event is very low in the simulations. This 

result is also confirmed by the fact that the abscissas La are equal to each other only if the 

final PSD is a monodispersed distribution centered at a unique value, which is not the case 

in most practical applications. It is also clear that this singularity problem of the matrix A 

is more related to boundary or initial conditions where monodispersed distributions might be 

used. 

In order to be consistent with the variables used in the multi-fluid model, we need to relate 

the weights and abscissas to the solid volume fraction E,, and the effective length for 

each solid phase. The volume fraction of each solid phase is related to the abscissas La and 
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weights w, by 
3 G E,, = k,L,w, = k,,, 

w, 

and the effective length of the solid phase is 

(4.19) 

(4.20) 

where I C ,  is a volumetric shape factor (e.g., for spherical particles k, = x/6). Using Eqs. 4.19 

and 4.20, the transport equations for E,, and L, can be written as 

The first equation represents the continuity equation for the dh solid phase in the presence of 

aggregation and breakage (cf. Eq. 4.2). It is clear that because of aggregation and breakage 

the volume fraction of each solid phase will change according to its characteristic length L, is 

order to mimic the evolution of the PSD. It is straightforward to verify that the summation of 

the transport equations over the N solid phases leads to a null source term. This implies that 

aggregation and breakage do not change the total solid volume fiaction (Le., the solid volume 

fraction is preserved). Thus, the source term for the gas volume fraction is null, and the 

relative volume fractions of the different solid phases change due to aggregation and breakage. 

The second equation in Eq. 4.21 is solved in the rnulti-fluid model as a set of user-defined 

scalars. Finally, note that using Eq. 4.19 the weights w, can be computed from and La 

whenever they are needed (e.g., to compute d) during the course of a simulation. Equations 4.4 

and 4.21 constitute the DQMOM-multi-fluid model for a polydisperse solid phase. The only 

remaining task is to relate d in Eq. 4.12 to the well-known expressions for aggregation and 

breakage from the theory of population balances (Ramakrishna, 2000). 

4.3 Implementation of Aggregation and Breakage 

In this work, we will consider changes in the PSD due only to aggregation and breakage. 

For this case, the moment transform of the aggregation and breakage source term is (Marchisio, 
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Vigil, and Fox, 2003b) 

(4.22) 

where the moments of the birth and death rates are defined by 

Z f ( X ,  t )  = ; hrn irn P(L, A) (L3 + A 3 y 3  .(A; x,t)n(L; x, t )  dX dL, (4.23) 

(4.25) 

ak(xl t )  = 1- Lka(L)n(L; x, t )  dl;. (4.26) 

In these expressions, @(L, A) is the aggregation kernel, which is proportional to the frequency 

of collision of two particles with lengths L and A, a(L)  is the breakage kernel, which is the 

frequency of disruption of a particle of length L,  and b(L[X) is the fragment distribution 

function, which contains information on the fragments produced by a breakage event. 

DQMOM is based on the quadrature approximation reported in Eq. 4.7. Thus, using this 

approximation the source term in Eq. 4.22 is closed: 

where Pay = P(La, L,,), a: = a(L,), and 

(4.28) 

As concerns the daughter distribution function, the following expression has been used (Marchi- 

sio, Vigil, and Fox, 2003b) 

(4.29) 

where m and n represent the mass ratios between the two fragments. For example, if m = 1 

and n = 1 the two fragments have the same volume and thus symmetric fragmentation is 

considered. If m # n then fragmentation is not symmetric and a particular case is when 
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m >> n (or n >> m) which is known as erosion. In this work, two different values of m and 

n have been considered. Most of the simulations were run with m = n = 1, but in Sec. 4.4.4 

erosion is also investigated and compared with symmetric fragmentation. 

The kinetic theory of granular flow can be applied to derive expressions for aggregation 

and breakage kernels in fluidized beds. According to  this theory, the number of collisions per 

unit volume and time between particles with indices a and y is given by Goldschmidt (2001) 

(4.30) 

where ma and my are the masses of the particles of size L, and L?, respectively, oar and 8, are 

the average particle size and average granular temperature of the solid mixture, respectively, 

and gar is the radial distribution for the mixture. (See Table 4.1 for the definitions of these 

parameters.) Thus, the aggregation kernel can be expressed as 

(4.31) 

where 'Ira is the success-factor for aggregation, which is usually a function of particle temper- 

ature, particle velocity and particle position. Likewise, the breakage kernel can be expressed 

as 

(4.32) 

where * b  is the success-factor for breakage. In this work, we will simply assume that Qa and 

V!b are constant. 

If we neglect the divergence of the particle velocity field and assume that particles have 

equal density, Eq. 4.31 can be rewritten as 

Likewise, Eq. 4.32 can be rewritten as 

(4.33) 

(4.34) 

These are the kinetic-theory kernels used in the simulations reported in Sec. 4.4. 
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4.4 Results and Discussion 

The mathematical model described above is incorporated in the rnulti-fluid CFD code 

MFIX, which is a general-purpose hydrodynamic model for describing dense or dilute gas- 

solids flows. The SIMPLE scheme and automatic time-step adjustment are used to speed up the 

calculation. A second-order spatial discretization method is adopted to increase the accuracy 

of the code. Due to the strong coupling between the phases through the drag forces, the partial 

elimination algorithm of Spalding (PEAS) is used to handle the interphase coupling (Syamlal, 

1998). All of the simulations reported here were run on an Alpha Cluster made up of Compaq 

XPlOOO workstations. The average time step At for the simulation was approximately 3 x 

10-4 s. 

Two-dimensional simulations were carried out for a FB reactor. The computational domain 

and solid physical properties are reported in Table 4.3. The initial static bed height was 

15.9 cm. The gas velocity was 20 cm/s, and the density and viscosity of air at  room temperature 

were used in the simulation. First, the code was tested with constant aggregation and breakage 

kernels and then by using the expressions derived from kinetic theory (Eqs. 4.33 and 4.34). 

The effect of the number of nodes N has been tested and predictions with N = 2, 3 and 4 

have been compared. The comparison was made with the same initial PSD, and thus the 

initial conditions have been calculated by using the same set of moments m k  (see Table 4.4) 

for all values of N. In order to initialize the fields, starting from the first 2N moments r n k  

(k = 0,. . . ,2N - 1) the N weights wa and the N abscissas La were calculated by using the 

PD algorithm (Gordon, 1968; Marchisio and Fox, 2005) and assumed to be homogeneously 

distributed in the initial static bed. 
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Particle diameter, dPN (pm) 

Phase volume fraction, 

Table 4.3 The computational domain and solids physical properties in the 
simulation. 

Iv a = l  a = 2  a = 3  a = 4  

2 183 356 

3 174 263 409 

4 171 225 316 420 

2 0.274 0.356 

3 0.196 0.229 0.205 
4 0.157 0.157 0.157 0.157 

Computational domain 

Width (cm) 10.1 

Height (cm) 50.0 
Number of grid cells 

Cell width, Aa: (cm) 0.67 

15 x 50 

Cell height, Ay (cm) 1.0 

Particle phgsical propel-ties 

Particle density, ps  (kg/m3) 2530 

Coefficient of restitution, e 0.8 

Packed bed void fraction, E: 0.38 

Table 4.4 Initial values of particle diameters (dpa) and solid-phase vol- 
ume fractions for N = 2, 3 and 4 for the same 
initial PSD.(rno = 32050.825 C D I - ~ ,  ml = 670.285 cm-', 
m2 = 15.245 cm-I, m3 = 0.385, mq = 1.09 x cm, 
m5 = 3.43 x 10-~  cm2,mg = 1.18 x cm3, 
m7 = 4.28 x cm4) 
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4.4.1 Constant Kernels 

In the first set of simulations, constant aggregation and breakage kernels were used. Thus, 

the aggregation kernel & and the breakage kernel a, were assumed to be independent of 

the particle diameter, velocity and other properties. The values of model parameters used in 

the simulations are listed in the Table 4.4. Three cases have been investigated and compared. 

In Case 1, the aggregation and breakage kernels are both set equal to zero. In Case 2, the 

aggregation kernel was set equal to 1 x m3/s, and the breakage kernel to 0.1 s-l. In Case 

3, the aggregation kernel was set equal to  1 x m3/s, and the breakage kernel to 1 s-'. 

For future reference, note that Case 2 will be dominated by aggregation, while Case 3 will be 

dominated by breakage. 

If no aggregation and breakage are present (Case l), the PSD does not change with time 

and the volumeaverage mean particle size is constant. However, due to  the differences in size 

between the N solid phases and therefore the difference in the drag force, particle segregation 

by size will occur. Indeed, smaller particles will tend to reside in the upper part of the 

bed, whereas bigger particles will tend to stay near the bottom. For Case 2, aggregation is 

dominant and the particles become larger and larger, so the volume-average mean particle size 

will increase with the time. For Case 3, breakage is dominant and the particles become smaller 

and smaller, and the volume-average mean particle size decreases with the time. The volume- 

average mean particle size in the fluidized bed for these three cases are shown in Fig. 4.1 for 

N I- 2, 3 and 4. Note that the volume-average mean particle size reported here is d32,  namely 

the ratio between the third moment m3 and the second moment m2 of the PSD. Note that 

the results are nearly independent of N for constant aggregation and breakage. There are 

significant fluctuations for Case 3, caused by the dilute system resulting from high breakage. 

- 

As already mentioned the DQMOM is based on a presumed functional form of the PSD that 

allows us to solve the closure problem and track with excellent accuracy the moments of the dis- 

tribution. Moreover, the different delta functions are treated as distinct solid phases. Although 

the underlying PSD could be retrieved by a sufficiently large number of moments (Diemer and 

Olson, 2002) in what follows we use a volume-fraction versus particle-size diagram to report 
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Figure 4.1 Volume-average mean particle size (&) for N = 2 (filled syrn- 
bols), N = 3 (empty symbols) and N = 4 (lines). 

on the position of the N delta functions. As explained in our previous work (Marchisio, Vigil, 

and Fox, 2003b) this can give some insight into the shape of the underlying PSD, although the 

real and presumed PSDs share only a fixed set, of moments. 

The PSD at the middle of the FB bed for Cases 2 and 3 at selected times are shown in 

Figs. 4.2 and 4.3, respectively. At time zero, there are four particles with different particle sizes 

and the same solid void fraction for both cases. For the aggregation dominated case (Fig. 4.2), 

smaller particles aggregate and produce large particles, and the volume fraction for smaller 

particles decreases with time. At 15 s, a broad distribution of particle sizes exists in the bed. 

For the breakage dominated case (Fig. 4.3), particles become smaller due to breakage. Indeed, 

more and more smalIer particles are produced due to the excessive breakage. The bed becomes 

more dilute with the newly formed smaller particles, and the PSD changes very quickly. Thus 

the PSD at different times are quite diEcrent. 

As discussed in Sec. 4.1, DQMOM was developed from QMOM. By using DQMOM, we do 

not need to solve the transport equations for the moments. Nevertheless, information about the 
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Figure 4.2 PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 2. 
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Figure 4.3 PSD at the middle of the FB at 0, 5, 10 and 15 s for Case 3. 
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Figure 4.4 Volume-average normalized moments for Case 2 using N = 2 
(filled symbols), N = 3 (empty symbols) and N = 4 (lines). 

moments is still valuable. Comparisons of the volume-average normalized moments for Cases 

2 and 3 are given in Figs. 4.4 and 4.5, respectively. The normalized moments are calculated 

by dividing the volume-average moments by their values at time t = 0: 

(4.35) 

Some moments have particular physical meaning. For example, mo represents the total particle 

number density, whereas m2 is related to the total particle area, and m3 is related to the total 

particle volume. For Case 2, it is possible to see that N = 2, 3 and 4 gives very similar 

predictions. In Fig. 4.4, the expected effects of aggregation are observed: the total particle 

number density (mo) decreases, as do rnl and m2, whereas the total particle volume m g  remains 

const ant. 

For Case 2, strong segregation occurs in the bed while particles are aggregating. Large 

particles migrate to the bottom of the fluidized bed and small particles move to the top. 

Aggregation continues after segregation and the big particles in the bottom keep aggregating 

and getting larger until large regions of the bed become defluidized. This transition is shown 

in Figs. 4.6-4.8, where contour plots of the mean particle size d32 at t = 5, 10 and 15 s, using 
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Figure 4.5 Volume-average, normalized moments for Case 3 using iV = 2 
(filled symbols), N = 3 (empty symbols) and N = 4 (lines). 

N = 2, 3 and 4 are reported. From the plots, we can see that although the mean particle size 

d32 over the whole domain is nearly the same for all N ,  the contour plots of d32 at different 

time are slightly different. The contour plots for N = 3 and 4 are more similar. Notice that 

because the kernels are constant for this case, even after defluidization particles continue to 

grow. This artifact can be eliminated by using the kinetic-theory kernels as described below. 

For Case 3 it is possible to see from Fig. 4.5 that the evolution of the moments is opposite of 

Case 2 (Le, mo, rnl and r n 2  increase). However, as before m3 remains constant, since breakage 

is also a volume-preserving process. In this case some differences between N = 2, 3 and 4 

are detected. The different behavior can be attributed to  elutriation of the smallest particles. 

Because of the higher breakage rates, some very small particles are produced and depending 

on the gas velocity these particles can leave the bed from the top. This strongly affects the 

total number of particles mo, but the effect of this loss of particles is less important €or ml, r n 2  

and almost negligible for m3. In fact, because the particles leaving the domain are very small, 

they represent a very small fraction of the volume of the bed and thus m3 does not change 

appreciably. For Case 3, no defluidization is observed. In fact, due to  the higher breakage 
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Figure 4.6 Time evolution of the spatial distribution of the mean particle 
size (d32) for Case 2 using N = 2. 
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Figure 4.7 Time evolution of the spatial distribution of the mean particle 
size (&2) for Case 2 using N = 3. 
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Figure 4.8 Time evolution of the spatial distribution of the mean particle 
size (d32) for Case 2 using N = 4. 
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rates, the volumeaverage mean particle size d32 decreases, and particles are kept well mixed 

by the gas flow. Because of the reduction in the mean particle size, the bed expands and the 

total particle number density locally decreases, reducing the breakage rate. 

Overall, from the constant-kernel cases we can condude that our numerical implementation 

of the DQMOM-multi-fluid model in MFIX works as expected. R a m  a computational point of 

view, the additional CPU time needed to include DQMOM is small relative to the total CPU 

time needed to solve the multi-fluid model with the same value of N but without aggregation 

and breakage. For example, using four nodes, the additional time for calculating the source 

term for DQMOM is only 18%. Regarding the dependence of the results on the number of 

nodes used in the quadrature, we find that for the constant-kernel cases reasonably accurate 

results can be obtained with only N = 2. This is consistent with our earlier QMOM work 

(Marchisio, Vigil, and Fox, 2003b) where it was shown that even for complicated aggregation 

and breakage kernels, the errors in the lower-order moments with N 5 4 are uniformly small. 

4.4.2 Kinetic-Theory Kernels 

As noted above, constant aggregation and breakage kernels can not represent the FB reactor 

realistically. This problem can be addressed by using the aggregation and breakage kernels 

from kinetic theory reported in Eqs. 4.31 and 4.32. Simulations have been carried out for 

N = 2, 3 and 4. The simulation conditions in Table 4.3 were again used for the kinetic-theory 

kernels. Two different cases were investigated and compared. In Case 4, the aggregation 

success factor Xila was 0.001 and the breakage success factor Q b  was 0.0001. In Case 5, the 

success factors for aggregation and breakage had the same value: 0.001. 

In Fig. 4.9 the volume-average mean particle size d32 is reported for Case 4. As it is possible 

to see, d32 increases with time. Several phenomena occur simultaneously. First, particles begin 

to aggregate and, due to  their increased size, move to the bottom of the reactor. Particles near 

the bottom of the reactor continue to aggregate until defluidization occurs. At this point, 

the granular temperature 13, is null and thus the aggregation and breakage kernels are null. 

No further particle aggregation (nor breakage) can occur. Although the volume-average mean 
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particle size predicted by using two, three and four nodes are very similar, some difference in 

the defluidization dynamics can be observed. Generally speaking, a higher number of nodes 

represents the system more accurately, but increases the computational time. For example, 

the CPU time required for running a simulation with N = 4 is 1.8 times higher than with 

N =: 3, and 3.4 times higher than with N = 2. 

Results for Case 5 are reported in Fig. 4.10. As it is possible to see, also for this case 

the volume-average mean particle size predicted by the DQMOM using two, three and four 

nodes is very similar. From Cases 4 and 5 ,  we note that the mean particle size distributions 

are nearly the same when breakage dominates or when mixing is significant. However, when 

segregation is significant, using different values of N produces different results. Nevertheless, 

as N increases, the results show closer agreement. In consideration of the computation cost, 

simulations with three nodes appears to  be sufficient to  represent the PSD. 

The instantaneous contour plots for the gas void fraction at 6 s using N = 3 for Cases 4 

and 5 are compared with Case 1 (no aggregation and breakage) in Fig. 4.11. It can be clearly 

seen that with aggregation the fluidized bed becomes defluidized and the bed height decreases 

compared to no aggregation and breakage (Case 1). Due to the high degree of aggregation, 

the particles become larger and the fluidized bed becomes a packed bed. (The void fraction is 

near to the maximum packed void haction.) Only a few bubbles are observed near the top of 

the bed. For the case dominated by breakage, the particles become smaller and remain well 

mixed. The bed height expands compared to Case 1, and larger bubbles are observed in the 

fluidized bed. 
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Figure 4.11 Contour plots of the gas volume fraction at 6 s. a: Case 1. b: 
Case 4. c: Case 5 .  

4.4.3 Effect of the Aggregation Success Factor 

The success factor for aggregation ga is a very important parameter that affects the PSD 

evolution and defluidization dynamics. The role of this parameter has been investigated for 

iV == 3, and thrcc different values of the success factor 9, = 0.001, 0.0005 and 0.0001 were 

tested. In these simulations, the success factor for breakage 5!!b was set to zero. Results are first 

compared in terms of the pressure-drop fluctuations in the gas-solid fluidized bed for different 

values of in Fig. 4.12. Notice that the pressure-drop fluctuations go to zero when the bed 

becomes totally defiuidized. The time for defluidization using the success factors reported 

above is 6, 11.5 and 50 s, respectively. Results show that an increase in the success factor 

causes earlier defluidization of the bed. Moreover, an increase in Q, causes an increase in the 

final mean particle size, as shown in Fig. 4.13. 
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Figure 4.12 Pressure drop fluctuations in gas-solid fluidized bed for 
three different values of the aggregation success factor. a: 
Qa = 0.001. b: !Pa = 0.0005. c: Pa = 0.0001. Note that 
the pressure fluctuations cease when the bed defluidizes. 
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Figure 4.13 Effect of the value of the aggregation success factor (9,) on 
the volumeaverage mean particle size. 

4.4.4 Effect of the F'ragrnent Distribution Function 

All the simulations above have been carried out using symmetric hagmentation, but erosion 

can also be very important in fluidized beds. Erosion is a fragmentation process which results 

in the formation of a small and a big fragment, and thus it is the separation of a small "chip" 

from a larger particle. Indeed, different mass ratios can be considered which still belong to  

the erosion-type fragmentation mechanism. In what follows the results from Case 5 (where in 

Eq. 4.29, m = n = 1) are compared with results obtained under the same operating conditions 

but with m = 9 and rt = 1 (which implies the formation of a fragment whose volume is 

nine times smaller than the volume of the other fragment) using N = 3. Figure 4.14 shows 

a comparison between symmetric fragmentation and erosion for the volume-average mean 

particle size. Results show that erosion causes a delay in the dynamic response of the mean 

particle size. This is due to the fact that erosion is a less effective breakage mechanism in the 

presence of aggregation. With symmetric fragmentation particles reduce their volume by a 

factor of two, whereas with erosion a large particle generates a small fragment and a second 

fragment which has nearly the original volume. 
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Figure 4.14 Effect of symmetric fragmentation versus erosion on the vol- 
ume-average mean particle size. 

It is interesting to note that with erosion another phenomenon can occur. The small 

fragments generated in the erosion process become smaller at a faster rate than with symmetric 

fragmentation and in a finite time an infinite number of particles with null size can be generated. 

This phenomenon goes under the name of shattering and can be detected by a net loss of mass. 

In Fig. 4.15, the three volume-average abscissas La, volume fractions and weights wa are 

reported for symmetric fragmentation and erosion. As it is possible to see, with erosion the 

smallest class L1 become null in a finite time (about 12 seconds) and the corresponding volume 

fraction cs1 becomes zero. The corresponding weight W I  should become infinite but since the 

equation are not directly solved for wa, it tends t o  zero instead. 

4.5 Conclusions 

Simulation results show that the DQMOM-multi-fluid model is an effective approach to rep- 

resent the evolution of the PSD due to aggregation and breakage in FB reactors. Two different 

sets of aggregation and breakage kernels were tested. For FB reactors, the kernel developed 

from kinetic theory should be more accurate then the constant kernel. With the kinetic-theory 
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Figure 4.15 Comparison between symmetric fragmentation (solid lines) 
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kernel, the mean particle size stops increasing when the fluidized bed becomes totally defluidiza- 

tion. Nevertheless, both kernels can describe the phenomena of particle growth, segregation, 

and elutriation due to aggregation and breakage. The performance of the DQMOM-multi-fluid 

model using two, three and four nodes has been tested. Results show that model predictions 

are very similar for N = 2-4. However, for some cases, using three or four nodes produces 

similar results, which are different than those found with two nodes. Considering the increase 

in computational time with an increasing number of nodes, three nodes appears to be a good 

choice for representing FB reactors. The effect of the success factor for aggregation 9, was 

investigated for the kinetic-theory kernel. As expected, it high success factor Qa leads to a 

shorter time for reaching complete defluidization. 

For modeling real systems, several additions features (e.g., heat and mass transfer, chemical 

reactions, etc.) must be added to the CFD model proposed in this work. However, the 

conceptual framework of the DQMOM-multi-fluid model need not be changed t o  accommodate 

these additional features. In other work, we apply the CFD modeling approach developed in 

this work to FB poly-olefin reactors used to produce high-density polyethylene as well as 

other polymers. For these reactors, the formation of hot spots can lead to  aggregation of the 

polymer particles and eventually to reactor shutdown. For this reason, the ability to describe 

polydisperse, aggregating particles is a centra1 requirement of any CFD model for FB poly- 

olefin reactors. The DQMOM-multi-fluid model developed here provides a computationdly 

efficient and robust method for attaining this objective. 
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CHAPTER 5.  SEGREGATION IN POLYDISPERSE FLUIDIZED BEDS: 

VALIDATION OF A MULTI-FLUID MODEL 

5.1 Introduction 

Fluidized bed reactors have been widely used in the food, chemical, pharmaceutical and 

metallurgical industries. The process of particle mixing and segregation change the distribution 

of mixture components in the bed, and thus play a very important role. For example, in a 

catalytic gas-phase olefin polymerization reactor, small catalyst particles are continuously fed 

into the bed, and react with the incoming monomer gas to produce a broad size distribution 

of polymer particles. Due to the differences in the polymer particle sizes, segregation occurs 

and fully-grown polymer particles migrate to the bottom where they are removed from the 

reactor. Meanwhile, the smaller pre-polymerized particles and fresh catalyst particles tend Lo 

migrate to the upper portions of the reactor and continue to react with monomer. Bubbles are 

known to play an intricate and ambiguous role in the reactor. On the one hand, bubbles cause 

segregation of larger particles. On the other hand, the rising bubbles also provide a mixing 

action to equalize the particle size and density distribution (Wu and Baeyens, 1998). Both the 

chemical reaction and rnass/heat transfer depend on the local particle size distribution in the 

bed. Therefore, a better understanding of the distribution of different solid components for a 

given mixture system is required to improve the design, operation and scale-up of gas-fluidized 

bed processes. 

An extensive literature has been published on the segregation and mixing behavior of par- 

ticles of different sizes and densities in fluidized-bed reactors. Attentions has been focused 

mostly on segregation in gas-solid fluidized beds with binary mixtures (i.e.) two particles dif- 

fering in size and/or density) (Nienow et al., 1987; Formisani et al., 2001; Hoffmann et al., 
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1993; Goldschmidt et al., 2003). Marzoccella et al. (2000) experimentally studied segregation 

behavior and transient fluidization of binary mixtures of particles in a bubbling fluidized bed. 

A defluidized bottom layer was observed in a segmented fluidization column. The fluidization 

behavior of rice husk-sand mixture in a biomass fluidized bed was studied by Sun et al. (2005). 

The distribution of mass fraction of rice husk particles along the bed height were measured, 

the profiles of the mean particle diameter of the mixture were determined. With the increasing 

computer power, simulation studies .of segregation in gas-soIid fluidized beds with binary mix- 

ture have been conducted (van Wachem et al., 2001; Cooper and Coronella, 2005; Feng et al., 

2004). Lu et al. (2003) used an Eulerian-Eulerian approach to simulate the segregation pat- 

terns of a binary mixture differing in particle size with the same density. In their model, both 

the gas phase and solids phase are interpenetrating continua. Separate transport equations are 

used for each particle class, allowing for interactions between size classes. For smaller fluidized 

bed systems, a more detailed discrete particle simulation (DPS) has been used to describe the 

dynamic behavior of a polydisperse mixture of particles (Hoomans et al., 2000; Bokkers et al., 

2004). In this Eulerian-Lagrangian model, each particle is tracked individually by Newton’s 

second law of motion, the gas phase is computed by solving the volume-average Navier-Stokes 

equations. The particle collisions are described by a hard-sphere or a soft-sphere model and 

no additional closure equations are needed for the interaction forces between particles. 

Although many experiments and simulations were conducted for binary systems, many 

industrial fluidized beds contain particles with continuous size distributions, and the experi- 

mental and simulation works on this subject are few. Hoffman and Romp (1991) performed 

experiments in a gas-solid fluidized bed with a continuous size distribution ranging from 150 to 

1000 pm. They noticed that the intermediate size particles behaved as jetsam (larger particles) 

at lower velocities and flotsam (smaller particles) at high velocities. Similarly, Wormsbecker 

et al. (2005) studied a bimodal distribution of pharmaceutical granulate mixtures in a conical 

fluidized bed. Both axial and radial segregation are observed in the bed. Large granule tended 

to accumulate at the center of the bed and became better mixed as the gas velocity increased. 

Only a few researchers reported simulation work on the segregation in gas-solid fluidized beds 
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with a continuous size distribution. Mathiesen et al. (2000) studied the Bow behavior in a 

circulating fluidized bed by approximating a realistic particle size distribution a s  three discrete 

particle sizes. An Eulerian-Eulerian model was used in the simulation and axial segregation 

was observed for a wide-ranging particle size distribution, and no segregation for a narrow size 

distribution. 

More recently, Dahl and Hrenya (2005) used a discrete-particle model to study the segrega- 

tion phenomena in gas-solid fluidized beds with a continuous size distribution. Both Gaussian 

and lognormal distributions were investigated over a range of distribution widths and gas ve- 

locities. The simulations show that the local distribution remains of the same type as the 

overall particle size distribution with a few notable exceptions. However, due to the computa- 

tional cost of the method, the results are limited to low-velocity, small fluidized beds. Thus, 

developing an Eulerian-Eulerian model, which can describe the segregation and mixing for a 

continuous PSD is very crucial for larger industrial-scale fluidized beds. In this work, the re- 

cently developed DQMOM is incorporated in the Eulerian-Eulerian model frame to represent 

the PSD by a finite number of nodes (Fan et al., 2004). The PSD is tracked through the 

moments, not the actual nodes, so only a few nodes are enough to represent, it. In order to 

validate the model we employed in this work, the results of the model are first compared with 

experiments performed by Goldschmidt et al. (2003) for a binary mixture. Then, the results 

for the continuous PSD are compared with the DPS simulation results of Dahl and Hrenya 

(2005). 

5.2 Multi-Fluid Model Description 

In this work, the multi-fluid model (MFM) based on the Eulerian-Eulerian approach is 

employed to describe particle segregation in a fluidized bed. In the model, both the gas phase 

and solid phases are described as interpenetrating continua. The gas phase is considered as 

the primary phase, whereas the solid phases are considered as secondary or dispersed phases. 

Each solid phase is characterized by a specific diameter, density and other properties. 
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The continuity and momentum equations for the gas and solid phases are 

N d 
at - (&s*PsaUsCt) + v ' (~sruPsruUsarUsa) = v .  g s a  - f,, + fg, + EsaPscrg. (5.4) 

8=1,P#a 

All the variables are same as described in Sec. 3.1 and a simple Newtonian closure is used for 

the gas-phase tensor. The kinetic theory of granular flow and the theory from the study of soil 

mechanics are combined to calculate the solid stress tensor in the viscous and plastic regimes. 

The constitutive relations €or the gas and solids stress tensor are summarized in Table 5.1. A 

more detailed discussion about the parameters can be found in Sec. 3.1. 

The interaction forces between phases (both solid and gas phase and solid-solid phase) are 

very crucial to model the segregation and mixing phenomena in the reactor. The interaction 

force between the gas phase and the ath solid phase, fgn, can be written as 

The first term on the right hand side of Eq. 5.5 describes the buoyancy force, and the second 

term is the drag force. The drag model derived by Gidaspow (1994) is used here, and 

and 

-(1+ 0.15Re:fs7) if Re,, 5 1000 cp = (5.7) 
10.44 if Re,, > 1000 
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Table 5.1 Constitutive relations for gas and solids stress tensors. 

Gas stress tensor: 
o g  = - PgI + EgPg [vug + (VU,)T] - iEgpgV. u,I 

Solids stress tensor: 
-.PfaI + & if E~ 5 E; plastic regime 

-P&I + ria if > E: viscous regime 
o s a  = 
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The interaction force between the Pth solid phase and ath solid phase, fBa, is written as 

with 

where gomo is the radial distribution function at contact, and 

M 
3dPdPP &SA 

+ d p p )  X=l d,x‘ 
1 

gopp = - + (5.11) 

The first term on the right-hand side of Eq. 5.10 was derived by Syamlal (1987) fiom 

kinetic theory accounting for the momentum transfer between the solid phases due to the 

collisions and sliding. e and Cfp, are the coefficient of restitution and coefficient of friction 

between particles. During the recent study done by Gera, Syamlal, and O’Brien (2004), it 

was found that a new term (the second term in the interaction force) is required to account 

for the “hindrance effect’:, otherwise the two solid phases will segregate even when they are 

packed or at low velocities. It is because when we consider the solid phases as two distinct 

phases, the small particles can go through the interstices of the packed bed, but in reality they 

do not experience any buoyant force from solids pressure gradient and actually behave like a 

single solid phase, so no segregation happens. Thus, an arbitrary function C1P* that makes 

the particle-particle drag sufficiently large is added, and this force accounts for the “hindrance 

cffect” so that the two solid phases will move togcther and, in effect, behave as one phase when 

they are packed. The “hindrance pressure” is defined as 

1 0 ~ ~ ( ~ ; ;  - E g ) l o  if Eg 5 E; 
p* = (5.12) 

and Cl is adjusted to different mixtures to match the actual segregation rate. In the systems 

we studied, a value of 0.3 was found to resemble the experiment data for all cases investigated. 
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5.3 Results and Discussion 

5.3.1 Binary PSD 

The Eulerian-Eulerian model described above is incorporated in an open source CFD code 

MFIX. The MFIX code employs a staggers finite-volume mesh system. To speed up the code, 

the SIMPLE scheme and automatic time-step adjustment are used (Syamlal, 1998). For all the 

simulations, a second-order spatial discretization method is used to improve the accuracy of 

the calculation. The model is first validated with the experiments conducted by Goldschmidt 

et al. (2003) for a binary mixture. The experiments were carried out in a 15 cm wide, 70 cm 

high, 1.5 crn deep pseudo two-dimensional gas fluidized bed, and the initial bed height was 

15 cm. The particles used in the experiment are reIatively large spherical glass beads, which 

qualify as Geldart D type particles. Three different cases are selected for the simulations. 

The bed compositions (ratio of mass fraction of small particles xsmaii to large particles qurge), 

superficial gas velocities and solid void fractions for small and large particles are summarized 

in Table 5.2. Two-dimensional simulations assuming no gradient exist in the third direction 

were carried out for a free-bubbling fluidized bed. The width of the simulated bed is 15 cm 

and the height is 50 cm. The computational grid consisted of 30 x 80 rectangular cells. The 

properties of solid phases are list in Table 5.3. 

In order to compare the simulation results with experimental data obtained from Gold- 

Schmidt et al. (2003), the average height of solid phases, (ha} (cr=small or large), is defined 

as 

(5.13) 

The relative segregation rate is calculated from the average bed height for small and large 

particles and has the form of 

CcelE E q c e l l h c e l l  

Cceii & w e l l  ’ 
(h,) = 

(5.14) 

where S = (hsma~~) / (h lurge)  and Sm,, = (2 - ZsmaEl)/(l - xsmall). The relative segregation 

rate s = 0 when the particles are perfectly mixed, and s = 1 when the particles are completely 

segregated. 
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Table 5.2 Different cases simulated with Eulerian-Euleriari model 

xsmail /x iarge UQ €small ElaTge 
Base case 0.25/0.75 1.20 m/s 0.145 0.435 
Case 1 0.50/0.50 1.10 m/s 0.29 0.29 
Case 2 0.50/0.50 1.25 m/s 0.29 0.29 

Table 5.3 Properties of solid phases used in the Eulerian-Eulerian simula- 
tion. 

small particle larger particles 
Particle density, ps 2526 kg/m3 2526 kg/m3 

Coefficient of restitution, e 0.97 0.97 

Minimum fluidization velocity 0.78 m/s 1.25 m/s 

Particle diameter, dp 1500 pm 2500 p m  

Coefficient of friction, Cf  0.15 0.15 

The base case has 25% small particles and 75% large particles, and the superficial velocity is 

1.20 m/s, which is between the minimum fluidization velocity for the small and large particles. 

The relative segregation rate calculated from average bed height from the Eulerian-Eulerian 

simulation is compared with experiments in Fig. 5.1. The simulation follows the trend well and 

the particles are well-mixed at the beginning, the relative segregation rate is small, close to  

zero. When segregation happens, the small particles moves to the top and the large particles 

move to the bottom of the bed, the relative segregation rate increases slowly. At 30 s, the 

value is around 0.4. 
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Figure 5.1 Evolution of relative segregation with time for base case. 
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Figure 5.2 Snapshots of the void fraction of large particles from simulation 
for case 1. 
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Figure 5.3 Snapshots of the void fraction of large particles from simulation 
for case 2. 

Two other cases wcrc chosen to study the effect of superficial gas velocity and the mixturc 

composition. Case 1 has a different bed cornposition tlian the base case. It consists of 50% 

small particles and 50% larger particles, and the superficial gas velocity is 1.10 m/s. Case 2 

has the same bed composition as case 1 but with a higher superficial gas velocity, 1.25 m/s. 

The snapshot of void fraction of large particles for cases 1 and 2 at 5, 10, 15 and 30 sec are 

shown in Figs 5.2 and 5.3. For case 1, a layer of jetsam (larger particles) is formed at the 
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bottom of the bed due to segregation. Bubbles are only observed near the top which is rich in 

small particles. Due to the accumulation of the large particles near the bottom, the bottom of 

the bed defluidized with time. For case 2, it is clearly seen that no layer of jetsam is formed 

at the bottom, only a few big particles accumulate around the corners. The higher superficial 

gas velocity produces more larger bubbles, and the bed is well-mixed with a higher bed height 

than case 1. 

The evolution of the relative segregation rate in time for cases 1 and 2 are compared with 

experiments in Fig. 5.4. The simulation slightly overpredicts case 1 for the first 10 sec, but 

overall the prediction is reasonably good. Compared to cme 1, the simulation for case 2 

resembles the experiment results much better. From these two cases, we can conclude that the 

simulations can capture the transient fluidization, segregation and mixing of binary mixture 

of particles. In an intermediate gas-velocity range, transient fluidization takes place where the 

bed is initially fluidized and then segregation gradually occurs. In the end, the larger particles 

go to the bottom and the small particles move to the top so that there is a defluidized bottom 

rich in jetsam and a top layer rich in flotsam (small particles). The relative segregation rate 

is higher (usually around 0.3-0.4). At high gas velocity (equal or higher than the minimum 

fluidization velocity of larger particles), the fluidized bed is hlly fluidized, so that effective bed 

mixing overtakes defluidization at the bottom and the segregation rate is rather low (smaller 

than 0.1). 

The granular temperature is a key parameter in the Eulerian-Eulerian model, and it mea- 

sures the small-scale fluctuating random motion of the particles in the fluid. The volume- 

fiaction-weighted, bed-averaged granular temperatures as a function of time for cases 1 and 2 

are shown in Fig. 5.5. The simulation results show that, for both cases, the granular temper- 

ature of the small particles remains nearly the same, with small fluctuations. For case 1, due 

to the segregation, the larger particles move to the bottom of the bed and since the superficial 

gas velocity is lower than the minimum fluidization velocity of the large particles, the bottom 

part of the bed defluidized. The granular temperature of the larger particles decreases with 

time. For case 2, the superficial gas velocity is equal to  the minimum fluidization velocity of 
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Figure 5.5 The volume-fraction-weighted, bed-averaged granular tempera- 
ture as a function of time from simulation. Left: case 1. Right: 
case 2. 
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the large particles, and the bed is well-mixed. No defluidization is observed in case 2. The 

statistics of granular temperature for the larger particles also remain constant. 

5.3.2 Continuous PSD 

After attaining good agreement with experiments for binary systems, segregation phenom- 

ena in gas-solid fluidized beds with a continuous PSD were investigated. The simulation results 

are compared with the DPS results of Dahl and Hrenya (2005). As in their work, the simulation 

is conducted in a small two-dimensional rectangular fluidized bed, the width of the bed is 0.1 

m and the height is 0.5 rn. The density of the particles is 2525 kg/m3. For all the DPS simula- 

tions, at time aero the particles are released and allowed to fall under the influence of gravity 

and gas-solid drag. At a specific start time, tstart= 0.1 s, the gas uniformly flows through the 

bed from the bottom. The gas velocity is linearly increased until the point (t,,t=0.15 s) where 

a desired gas fluidization velocity is achieved. Then the simulation proceeds through time 

until the target simulation time (tfinal=30 s) is obtained. In the Eulerian-Eulerian model, the 

simulations start with a well-mixed bed, at time zero the gas is uniformly distributed at the 

bottom of the bed with the desired velocity, and the simulations run to 30 s, and the last 10 

seconds were used to get the average particle diameter and standard deviation for comparison 

with the DPS simulations. For the gas phase, air is used. The density of gas is 1.28 kg/rn3 

and the viscosity is 1.7 x kg/m.s. 

Four systems were chosen for the comparisons. The overall size distribution, ratio of the 

standard deviation (CT) of the PSD to the mean particle diameter coefficient of resti- 

tution (e), coefficient of friction (Cj ) ,  the superficial gas velocity (ug) and the root mean 

square diameter (dTms) are listed in Table 5.4. One thing noticed in the table is that different 

superficial velocities were used from Dahl and Hrenya’s work (ZOOS).  This was bccause the 

DPS simulation used in their work were a strictly two dimensional (2D) simulation. However 

Eulerian-Eulerian model is a three dimensional (3D) simulation, and the particles were as- 

sumed to be packed in a 3D unit cube, compared to DPS simulation, where the particles were 

packed in a 2D hexagonal lattice. In the DPS simulations, this effect was taken into account by 
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Table 5.4 Simulation system properties. 

System PSD a / & v e  e c, ug(m/s) drms (w) 
1 Gaussian 0.3 0.95 0.15 0.80 (1.00)* 1000 
2 Gaussian 0.3 0.95 0.15 1.00 (1.25)' 1000 
3 Gaussian 0.1 0.95 0.15 0.80 (1.00)* 1000 
4 Lognormal 0.5 0.99 0.01 1.0 (1.25)* 1000 

*superficial gas velocity used in DPS simulation 

transformation between 2D gas-phase void fraction and 3D gas-phase void fraction (Hoomans 

et al., 1996): 
2 

(5.15) 

However, it is an equation derived for monodisperse particles. During the work, it was found 

E 3 D  = 1 - ~ -(I - E2D)1-5 

that the superficial gas velocity had to be reduced to 80% of the velocity used in the DPS 

simulation to match the minimum fluidization velocity for a mixture with continuous PSD in 

Eulerian-Eulerian simulations. 

In the Eulerian-Eulerian model, the recently developed DQMOM is used to represent the 

continuous PSD by a summation of Dirac delta function (Fan et al., 2004). The distribution is 

approximated by a number of specific particle size classes, and tracked by the development of 

the moments. According to  the previous work (Fan et al., 2004), only a few (3 or 4) size classes 

are needed to represent the PSD, so this method has a significant advantage over conventional 

methods, such as the sectional method, on the computational cost. 

For a Gaussian distribution with a wide distribution o/dave = 0.3 (System l), the j t h  

moment, mj, can be calculated as (Randolph and Larson, 1971) 

mj ~ &ydave)TJ.! 3 ' ' ( j  - r  - 1) 

r ( j  - r)!r! 

(5.16) r = 0,2,4, .. 7 , j for j even 

r = 1,3,5, . . .  , j for j odd. 
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Table 5.5 Particle diameters and weights for System 1 with N = 2 - 4 

N a = 1  a = 2  a = 3  a = 4  
2 670 1245 

4 287 745 1171 1629 
Particle diameter dPa, pm 3 460 958 1456 

2 0.5 0.5 

4 0.0459 0.4541 0.4541 0.0459 
Weights ua 3 0.1667 0.6666 0.1667 

According to DQMOM method, 

rnj(X, t )  = 

the moments can be approximated by quadrature: 

lmn(L;x , t )L3dL  x w n L i ,  N 

a=l 
(5.17) 

By using the product differencc(PD) algorithm (Gordon, 1968), the particle diameter (Lo or 

dpa,  a = 1, . . . , N )  and weights (ua) can be obtained from the first 2N moments. For System 

1, with IV = 2 - 4, the corresponding particle diameters and weights are listed in Table 5.5. 

From the DPS simulation, the fluidization behavior of the mixture can be best described 

as low-energy bubbling, the bed height only increases from 5 to 6.5 cm. The segregation 

phenomena can be clearly seen for System 1. The normalized mean diameter of the local size 

distribution (scaled by the mean diameter of the overall size distribution, dav, overall) along the 

bed height were calculated and compared with DPS in Fig. 5.6 using 2-4 nodes. The DPS 

results shows that, near the left wall (a=0.5 an), the segregation is ,not very noticeable, the 

normalized mean diameter is around 1.0, The segregation in the interior of the bed (zc-2.5 cm 

and 4.5 cm) was much stronger, the normalized mean diameter decreases with increasing height. 

However, the Eulerian-Eulerian model gives slightly different results. The segregation is very 

strong at all points in the bed, either near the wall or inside of the bed. Due to segregation, 

at the bottom of the bed, the normalized mean diameter is large with a value of 1.4. Near the 

top of the bed, the normalized mean diameter is small with a value of 0.6. For the effect of 

nodes number, If two nodes are used, the bed height is slightly higher than using three nodes 



99 

and four nodes. Thus the mean diameter at  the top of the bed is slightly larger than the DPS 

simulation. 

The standard deviation (a)  of the local size distribution (scaled by the standard deviation 

of the overall size distribution, goverall) along the bed height for System 1 was also computed 

and compared with DPS simulations in Fig. 5.7. Also some differences can be observed in the 

comparison. The DPS simulation shows that the standard deviation for each curve is different, 

only near the lefi wall, the normalized standard deviation decreases with the height, and then 

stays around 1.0. For other two curves (s=2.5 cm and 4.5 cm), the normalized standard 

deviations are lower than 1.0. However using the Eulerian-Eulerian model, it can not simulate 

the lateral segregation across the bed, the curves are the same for all three locations (near the 

wall and inside of the bed). Notice in the graphs, if two nodes are used, the normalized standard 

deviation is 1.0, which means the local distribution are identical to the overall distribution. 

It shows representing the continuous PSD by two nodes are not adequate] as it can not catch 

the difference between local distribution and overall distribution. With the increase of the 

number of nodes, for all three locations, the normalized standard deviation decreases from 1.4 

to  around 1.0. Thc local distribution are different at different locations. A wider distribution 

near the bottom, and a narrow distribution near the top of the bed. 

If we plot the normalized mean diameter and standard deviation of the local size distribution 

across the bed (Figs. 5.8 and 5.9), the difference between Eulerian-Eulerian model and DPS 

simulation are more easily observed. As we can see, DPS simulation shows there is lateral 

segregation at the bottom (y=0.5 cm) and at the top of the bed (y=6.5 cm). Larger particles 

tend to accumulate in the middle of the bed, and less large particles are found near the wall. 

The average particle diameter doesn’t change with the height, and not much axial segregation 

is observed near the wall. However inside of the bed (3-2.5 cm and 4.5 cm), no lateral 

segregation is observed, and the normalized mean diameter across the bed remains constant, 

same as the overall mean diameter in the bed. For the Eulerian-Eulerian simulation, even if 

we increase the number of nodes, the lateral segregation at the bottom and top of the bed 

can not be observed. The normalized mean diameter remains constant across the bed at all 
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locations (y=0.5, 2.5, 4.5 and 6.5 cm). So axial segregation is found everywhere, even near the 

wall. The same phenomena can also be found in Fig. 5.9 and there is no difference in standard 

deviation across the bed. 

The reason that current model can not catch the lateral segregation is probably because 

that the current kinetic theory model assumes the collisions are binary and quasi-instantaneous 

and neglect the long-term and multi-particle contacts. However, in regions with high particle 

volume fraction, such as near the wall or the corner, frictional stresses are more important. 

There are more particle-particle and particle-wall contact and the flow behavior is effected by 

the frictional model at high solid volume fractions. Due to neglect of the frictional stresses, 

the Eulerian-Eulerian is not able to catch the less segregated region near the wall and shows 

no difference at near the wall and inside of the bed. We believe DPS with a periodic boundary 

condition (ignoring the wall effect) would give more similar results €or DPS and the Eulerian- 

Eulerian model. 

Even though the above system is a low-energy fluidized bed, a significant segregation along 

the height is observed from both simulations. According to the simulations and experiments 

for the binary system, increasing the gas flow rate will lead to  better mixing and produce 

more bubbles. Segregation will be overtaken by the mixing, and segregation phenomena will 

no longer exist. Thus, the effect of the superficial gas velocity is studied in System 2, which 

has the same properties as System 1, but with a higher superficial gas velocity ug = 1.0 m/s 

(1.25 times of the gas velocity of System 1). The normahed mean diameter of the local 

size distribution along the bed height for System 2 using 2-4 nodes are compared with DPS 

simulation results in Fig. 5.10. Compared with Fig. 5.6 (System 1), both DPS simulation and 

our simulation shows that the segregation along the height is greatly reduced, segregation only 

happens at the very bottom of the bed, and the normalized mean diameter at the bottom is 

only around 1.1, smaller than the one observed in System 1. Also notice that, increasing the 

number of nodes doesn't change the results very much. With better mixing, two nodes are 

enough to  represent the whole system. 

The third system (System 3) has the same properties as System 1, but with a narrow 
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Gaussian distribution, the ratio of the standard deviation of the particle size to the mean 

particle size a/d,,, reduces to 0.1. Since the particle size distribution changed, the moments 

are different, and the corresponding particle nodes for System 3 are different. With a narrow 

distribution, the variance between particle diameters for each node is smaller, less segregation 

is expected. The mean diameter of the local size distribution along the bed height doesn’t 

change, same as the overall diameter. The local distribution is same as the overall distribution, 

no axial and lateral segregation are observed along the bed height and across the bed, Similar 

to System 2, when the distribution is narrow, better-mixed is achieved, and less nodes need to 

be used in DQMOM. 

After the analysis of segregation and mixing phenomena in a Gaussian mixture, a study for 

the effect of the distribution was also conducted. Since log-normal distributions are common in 

industrial fluidized beds, a log-normal distribution with oldave = 0.5 (System 4) was studied. 

Similar to System 3, the particles are slightly elastic (e = 0.99) and less frictional (Cf = 0.01). 

Due to the long tail of the lognormal distribution, the maximum particle size is almost 3 or 4 

times of the average particle size, so the minimum fluidization velocity €or System 4 is higher 

.than System 1. Thus the supmficial gas velocity increases from 0.8 m/s to 1.0 m/s. 

The jth moment of the log-normal distribution can be gotten from equation (Randolph and 

Larson, 1971): 

(5.18) 

By using PD algorithm, the corresponding weights and particle diameters that represent Sys- 

tem 4 with nodes from 2 to 4 are listed in Table 5.6. 

The normalized mean diameter and standard deviation of the local size distribution along 

the bed height for System 4 are calculated and compared in Figs. 5.11 and 5.12. According 

to the simulation, due to the bigger particles in the tail for the log-normal distribution, the 

segregation is much stronger. The bigger particles quickly move to the bottom of the bed, and 

then the bed defluidized at the bottom, and a stagnant layer forms with the average mean 
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Table 5.6 Particle diameters and weights for System 4 using N = 2 - 4. 

N a = l  a = 2  a = 3  f f = 4  
2 682 1834 

4 527 1193 2558 5794 
2 0.8148 0.1852 

4 0.5134 0.4549 0.0315 ~ . O X ~ O - ~  

Particle diameter $,, ,urn 3 584 1398 3347 

Weights wru 3 0.6375 0.3544 8 . 1 ~ 1 0 - ~  

particle size rather large, around 2.0 times of average particle size for the whole bed. The 

Eulerian-Eulerian simulation shows that two nodes are not enough to represent the continuous 

particle size. If two nodes are used, the node, which has the large particle diameter, accumulates 

at the bottom and another node, the smaller particles, moves to the top. The two nodes become 

completely segregated and form two layers in the simulation. The normalized average particle 

size suddenly drops from 2.0 to 0.5, not a smooth curve as showed in DPS. Thus more nodes 

are needed to  represent the lognormal distribution. With the increase of the nodes to N = 3 or 

N = 4, the EuIerian-Eulerian model agrees with DPS better. The mean particle size gradually 

decreases with increasing height. Also notice in Fig. 5.11, the DPS simulation shows there 

is lateral segregation near the bottom. Same as in the previous simulations, the Eulerian- 

Eulerian model can not catch the lateral segregation for System 4. The variation of the mean 

diameter and standard deviation of the local size distribution across the bed for System 4 

are also shown in Figs. 5.13 and 5.14. The difference between DPS and Eulerian-Eulerian 

model is more easily observed in these two figures. For Eulerian-Eulerian model, all the curves 

are almost horizonal lines, with a little fluctuation at the top of the bed. In contrast, DPS 

simulation showed lateral segregation at the bottom of the bed (the curve for y=0.5 cm), the 

larger particles tend to accumulate in the middle of the bed. Note that using either N=3 or 4 

yields acceptable agreement with DPS results. 
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5.4 Conclusions 

An Eulerian-Eulerian model for polydisperse fluidized beds was studied for a binary system 

and a few systems with continuous PSD. The simulations for the binary system were compared 

with the experiments conducted by Goldschmidt et al., and the model reproduced the segre- 

gation and mixing phenomena in the binary mixture experiments. When the superficial gas 

velocity was low, smaller than the minimum fluidization velocity for the large particles, segre- 

gation occurred, the larger particles moved to the bottom and the small particles moved to the 

top, formed a layer of rich in jetsam at the bottom, the fluidized bed defluidized at the bottom. 

When the superficial gas vclocity was equal to or larger than the minimum fluidization velocity, 

more bubbles were observed in the bed, and better mixing was achieved. The segregation in 

the bed was greatly reduced, and the segregation rate was very low, around 0.1. 

Many industrial fluidized beds contain particles with continuous PSD, thus Segregation 

and mixing phenomena for a continuous size distribution were also studied. The first three 

systems had a Gaussian distribution. System 1 had a wide distribution with u/dave = 0.3 

and System 2 has the same distribution as System 1 but with a higher superficial gas velocity. 

System 3 had a narrow distribution with c / d U V e  = 0.1. The last system (System 4) had 

a log-normal distribution with o/d,,, = 0.5. As expected, the wide Gaussian distribution 

showed more segregation than the narrow one, and the lognormal distribution showed the 

greatest segregation. Increasing superficial gas velocity generated more bubbles, better mixing, 

and reduced the segregation. The simulation results were compared with DPS simulations 

conducted by Dah1 and Hrenya, and showed that the Eulerian-Eulerian model can reproduce 

the segregation along the bed height, but can not reproduce the lateral segregation across 

the bed observed in DPS simulations. In the simulations, DQMOM is used to represent the 

underlining distribution, thc effect of the node numbers was also studied. The results showed 

that, when the distribution was narrow or the superficial gas velocity was high, the mixing 

dominated the segregation, and less nodes were needed. For a wide distribution with strong 

segregation, at least three nodes were needed to represent the distribution. 
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Figure 5.6 The normalized mean diameter of the local size distribution 
along the bed height for System 1. 



105 

..t \ I/ 0.6 

X=I).5Cm, MFN 
4 X=2.5Cm, MFN - x.4.5cm. MFN - x=O.lcm, DPS - x=2.5cm, DPS 

x=4.5cm, DPS 

N=2 

P -  

t l :  
D .  

0.8 . 3 -  

0.6 - N=3 

N=4 

Figure 5.7 The normalized standard deviation of the local size distribution 
along the bed height for System 1. 
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Figure 5.8 The normalized mean diameter of the local size distribution 
across the bed for System 1. 
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Figure 5.9 The normalized standard deviation of the local size distribution 
across the bed for System 1. 
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Figure 5.10 The normaBzed mean diameter of the local size distribution 
along the bed height for System 2. 
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Figure 5,11 The normalized mean diameter of the local size distribution 
along the bed height for System 4. 
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tion along the bed height for System 4. 
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Figure 5.13 The normalized mean diameter of the local 
across the bed for System 4. 

size distribution 
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Figure 5.14 The normalized standard deviation of the local size distribu- 
tion across the bed for System 4. 
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CHAPTER 6. COMPUTATIONAL FLUID DYNAMICS MODELING 

OF UNIPOL GAS-PHASE REACTORS 

6.1 Introduction 

Polyolefins, especially PP and PE, have become the most popular resins due to the merit 

of low’ price, flexibility of molding and ease of disposal or rccycling (Kancko, Shiojima, and 

Horio, 1999). Baed  on production data for 1999 and 2000, 85-95 million tons of polyolefins 

are produced around the world. This already impressive market is still in full growth, Foxely 

(1998) predicted that the growth rates is about 30% for PP and about 18% for P E  products 

for the period from 2000 to 2005, Nowadays, most polyolefin polymerization processes are 

executed in a liquid- or gas-phase reactor or a combination of both. Because there is no need 

for drying and separation of olefins from solvents, a gas-phase process is more advantageous 

than conventional liquid slurry processes. For the gas-phase process, four reactor types com- 

rnercializcd so far are the fluidized bcd type (UNIPOL process), the verticd stirred-bed type . 
(NOVOLEN process), the horizontal stirred-bed type (AMOCO process) and multizone circu- 

lating reactor type (Base1 process). The use of a gas-fluidized bed with its inherent excellent 

mixing and heat-transfer characteristics is a major strength of gas phase processes such as the 

UNIPOL process. the UNIPOL process. The UNIPOL process has been licensed extensively 

with over 100 reactor lines in 24 different countries comprising approximately 17,000,000 met- 

ric tons of PE capacity. As such it represents 25% of global PE capacity. The UNIPOL PP 

process have been implemented in 15 countries, on six continents. There are over 30 reactor 

lines using UNIPOL PP in operation worldwide with a production capacity of over 5 million 

tons per year (Burdett et al., 2001). 

, 

Although the gas phase process has been commonly employed in the production of PE 
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since 1980s, some inherent features of the process remain as a challenge for an engineering 

breakthrough. One of the main problems in gas-solid fluidized beds, not only €or PE but other 

processes as well, is particle agglomeration (Mckenna and Soares, 2001). Two main factors 

contribute to the agglomeration in the bed, one is the “hot spots” formed in the bed and 

another is the electrostatic charge. In nature, olefin polymerization is a highly exothermic 

reaction. The temperature of the polymer particles tend to rise and sometimes it will exceed 

the melting point of the polymer (usually<430K). If the heat removal is poor, local “hot spots” 

are formed and the hot spot becomes a nucleus for polymerization at a much more rapid rate. 

Then the particles can melt and stick together to form bigger particles or fuse into a sheet 

or large chunk. On the other hand, when polymer particles are fluidized within the reactor, 

electrostatic charges are generated from surface charge polarization and separation due to 

friction among gas, particles and reactor walls (Park et al., 2002). When two particles (or 

particle and reactor wall) with dissimilar electrical charge meet, they are attractive to each 

other and form loose agglomerates. The electrostatic force induced by these charges can change 

the hydrodynamics of gas-solid fluidized bed and more importantly unintentional acciimulation 

of electrostatic charges can lead to fused particle agglomerates. This is a major problem for 

commercial-scale processes since it interferes with the performance of the reactors. In extreme 

cases this can lead to FB reactor defluidization, and then the whole process needs to  be shut 

down. 

Many people have investigated the particle overheating and electrostatic charge in the Au- 

idized beds. Several models of a single polymer particle for olefin polymerization on supported 

catalysts were developed in recent years to study the particle overheating, such as a simple 

steady-state model of the non-growing particle by Hutchinson and Ray (1987); polymeric-flow 

model used by Schmeal and Street (1971), Hoe1 et al. (1994) and Veera et al. (2002); more 

sophisticated multi-grain models developed by Floyd et al. (1986), Hutchinson et al. (1992) 

and Debling and Ray (1995); and a novel, simple lumped-thermal model used by Song (2004). 

Electrostatic charge are measured and modelIed in gas-solid fluidized beds by Professor Bi’s 

group (Park et al., 2002; Mehrani et al., 2005). The study shows that the increased electrostatic 
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charge levels occur in Auidized beds with increased fluidization gas velocity, increased particle 

size, increased bubble size and increased bed circulation rate. The particle size determines 

the polarity, large particles and small particles having opposite polarity, so in order to know 

the electrostatic field in the bed, it is very essential to  study the particle size distribution and 

fluidized bed hydrodynamics (Hendrickson, 2006). 

With the development of high-performance computers and rnultiphase models, CFD has 

become a powerful tool for the understanding of the effect of fluid dynamics on chemical-reactor 

performance. In the previous work, Mckenna et al. (1999) studied the overheating probIem for a 

single particle or a system of two or three touching particles or a single particle attached to the 

wall using CFD. The study shows that the contact between small hot particles and larger cool 

ones helps to avoid overheating and the early models of heat transfer in olefin polymerization 

overpredict the temperature rise during early stages of polymerization. Meanwhile, Kaneko 

et al. (1999) also studied the motion of the particles and nonuniform distribution of temperature 

in a small fluidized bed using Discrete Element Model (DEM). However the work on CFD 

simulation of pilot-scale fluidized beds is very few. Due to the large dimension of the industrial- 

scale fluidized bcd, the simulation work can only be done in Eulerian-Eulerian frame. Gobin 

et al. (2003) presented some preliminary fluid dynarriic sirnulation results of larger scale ethylene 

polymerization dense fluidized bed using Eulerian model. The results are in good qualitative 

agreement with the observed bed height, pressure drop and mean flow organization. In their 

work, the solid phase consists of spherical particles with a constant particle size, but in reality, 

the solid phase consists of different particle sizes with different age time. Thus in our work, a 

multi-fluid model and chemical reaction engineering model are combined to investigate the fluid 

dynamics, mass/heat transfer and particle size distribution in a pilot-scale fluidized bed. These 

information not only can provide the visualization of the flow pattern of the fluidized bed, but 

it also can provide important mechanistic understanding regarding particle overheating and 

potential agglomeration problems. 
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6.2 Polymerization Kinetics and Mult i-fluid Model 

6.2.1 Polymerization Kinetics for Metallocene Catalyst 

A simplified mechanistic scheme for the metallocene catalyst kinetics is used here. Com- 

pared to more widely used kinetics in the literature, chain transfer is ignored, only three 

fundamental reactions: initiation, propagation and decay are considered. The approach is one 

of engineering the catalyst design rather than a detailed mechanistic understanding of the var- 

ious copolymerization and chain transfer reactions. This is necessary since activation energies 

for these reactions are seldom measured. The rate constants for initiation(ki), propagation 

( k p )  and decay (kd) are defined below: 

Initiation: c 3 c* 

Propagation: ~ : ( c * >  + M kp, P;,, 

Decay : Pz(c*) kd, P, + co 

where c is a potential catalyst active site and C* is an active catalyst site. P," is a living polymer 

with chain length n. M is monomer, P, is a dead polymer segment of length n that can not 

undergo any further reaction, and co is the deactivated catalyst site or dead site. For each rate 

constant, an Arrhenius equation is considered, 

where IC0 is the pre-exponential factor and Ea is the activation energy. 

All the reactions are first order reactions, and ki and kd has the unit of hr-', kp has the 

unit of g/gcat hr. The rate and activation energy can be parameterized based on results from 

laboratory-scale experiments using a stirred gas-phase bed reactor. During the study, it was 

found that most rate profiIes have a "peak" profile at the start of the polymerization and a two 

site model fit the data better. The first site has a fast decay and initiation rate, accounting 

for the initial peak in the reaction rate. The second site has a slow decay and initiation rate, 

accounting for the slow decay at the end in the rate profile. 
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6.2.2 Multi-Fluid Model 

The multi-fluid model used in this work was extended from the two-fluid continuum model 

by Syamlal et al. (1993). In this model, gas and N solid phases are treated as interpenetrating 

continua using an Eulerian model. Each solid phase is characterized by a “particle” diame- 

ter, density and other properties, and each phase has its own set of governing hydrodynamic 

equations. The averaging approach is applied to derive the equations for both gas and solid 

phases. The phasic volume fractions are introduced to track the fraction of the averaging 

volume occupied by various phases. By definition, the volume fraction of all the phases must 

sum to one: 
N 

Eg + -&Y = 1, 
ff=l 

where and E,, are the volume fractions of the gas and solid phases, respectively. 

and 

The mass balances for the gas and solid phases are 

where p g  and ps are the gas- and solid-phase densities, us and us, are the gas- and solid- 

phase velocities, and Mg, is the mass-transfer rate from the gas to the ath solid phase due to 

polymerization reaction. The last two terms in the solid continuity equation account for the 

effect of aggregation and breakage. Since aggregation and breakage will not change the total 

solid volume fraction, there are no extra terms in the gas continuity equation. Only monomer 

(ethylene) is assumed to transfer from gas phase to solid phase since it is the primary heat 

source for the polymerization rate (-go%), and the mass-transfer model is 

IC,, is mass-transfer coefficient and it is related to Sherwood number Sh, by 
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where Db is the diffusivity of monomer in the bulk phase of the reactor. a, is the ratio of 

particle external surEace area to volume, and for a spherical particle, a, = 6/La. cg and CM* 

are the monomer concentration in the gas phase and solid phase, respectively. C M ~  is related 

to the mass fraction of monomer in the solid phase X s ~ *  by C M ~  = psXsMa/Mw. 

The momentum balances for the gas and solid phases are 

(6.10) 

and 

where ug and csa are the gas- and solid-phase stress tensors, f,, is the interaction force 

between the gas and the nth solid phase, €pa is the interaction force between the loth and ath 

solid phases, and g is the gravity vector. A simple Newtonian closure is used for the gas-phase 

stress tensor, and kinetic theory is used to calculate the solid-phase stress tensor in the viscous 

regime (SyamZal, Rogers, and O’Brien, 1993). 

For the energy balance equations, the heat produced from polymerization reaction is as- 

signed to solid phase. The energy balance for gas and solid phase are 

where Tg and .Tsa are the gas and solid-phase temperature. Q and qSa are the conductive heat 

flux for gas and solid phase. Hgo! is the heat transfer between gas and solid phase and it can 

be modelled as 

Hga = --&s*hfaav(%r - Tg), (6.14) 

where hfa is the heat-transfer coefficient and it is related to Nusselt number by 

(6.15) 

A, is the thermal conductivity of the gas phase. 
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The heat produced from polymerization reaction is AH,,, = -~q,kL[[c*]c~, AH,, where 

kh = Icp/[cg] has units of cm3/mol-sites s. [cg] is the initial potential active catalyst site 

concentration. The lumped-thermal model is used here and it assumes that the temperature 

of the particle is uniform, but different from that of the surrounding, and the active sites are 

uniformly distributed within the particle during the growth. The intraparticle heat transfer 

is ignored and the intraparticle species diffusion resistance is accounted for by an isothermal 

effectiveness-factor q~,, which has a form of 

where $a is the non-isothermal Thiele modulus and 

(6.16) 

(6.17) 

 de^ is the effective diffusivity and for heterogeneous catalyst,  de^ = Db&/r, where E and T 

are the porosity and tortuosity of the macroparticle, respectively. 

Typically, in a UNIPOL polyethylene process, there are four species in the gas phase: C2H4 

(monomer), an a-olefin (copolymer), N2 and Bz. For each species, the mass fraction is XI, X2, 

X3 and X4 respectively. Only monomer (CzH,) is transferred from gas phase to solid phase, 

thus the equation for each species can be written as 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

In each solid phase, the mass fraction of monomer in the solid phase needs to be solved, 

and 
a 

--(EsaPsXsMcy) + v * ( C s a P s X s M a U s a )  = Mgff - 7?crEsf fPs~;X ,Mly [C*]a .  (6.22) at 
Noticed in this equation, mass transfer and chemical reaction are coupled. For polymerization 

reaction, mass transfer is very fast and the reaction is controlled by the polymerization reaction 
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rate. The mass fraction of monomer in the solid phase is a constant. If there is no aggregation 

and breakage, combining Eq. 6.7 with Eq. 6.2.2, we can get: 

Thus when all the active sites become dead sites, [c*] = 0, both mass transfer and reaction 

terms are zero, and particles will stop growing. 

The species equations €or potential active sites [c ] ,  active site [c*] and dead sites [co] are 

where ki, kp and kd are the rate constant for initiation, propagation and decay, respectively. 

Note that kesh catalyst has only potential active sites, and no active sites and dead sites, so 

[c'] = [CO] = 0. 

Particle size changes due to polymerization reaction, aggreg3tion and breakage. If no 

aggregation and breakage are considered, the particle length is related to solid void fraction 

by a constant. In this way, transport equations for particle length or particle volume are not 

needed. But if aggregation and breakage are considered, such equations are needed to be solved 

with other equations simultaneously. 

6.3 Results and Discussion 

In a UNIPOL PE process (Fig. 6.1), the fluidized bed reactor consists of a reaction zone 

and disengagement zone. The main reaction zone has a height to diameter ratio of about 4-6. 

The disengagement zone above the main reaction zone has a larger diameter in order to reduce 

the gas velocity, so that the particles entrained by the gas can fall back into the main section of 

the bed. It is essential that the bed always contain polymer particles to entrap and distribute 

the powdery catalyst. On start up, the reaction zone of the fluidized bed is charged with 

polymer before gas flow is initiated. Gas mixture (monomer (C~HQ),  comonomer, inert(N2) 



and H2) is introduced to the 

fluidize the polymer particles 

settled bed from the bottom with a velocity sufficiently high to 

in the reactor. Afier the bed reaches steady state, fresh catalyst 

particles (with diameter of 20-100 pm) are injected horn a position above the distributor and 

reacts with the incoming monomer. The catalyst particles are quickly encapsulated by the 

newly formed polymer and grow to form bigger particles. The fully-grown polymer particles 

accumulate in the fluidized bed and cause the bed level to rise. When the bed level reaches a 

certain height, the product is removed intermittently from the bottom portion of the fluidized 

bed. The particle entrainment together with the umeacted, gas pass through the enlarged 

disengagement zone and leave the reactor from the top. The entrainment can be further 

reduced by a cyclone and a filter to  avoid deposition of polymer on heat-transfer surfaces arid 

compressor blades. The effluent stream has a higher monomer concentration since the single- 

pass monomer conversion in the FB polymerization reactors is low, only 2% to 5%. The effluent 

gas is compressed, cooled and recycled back to the reactor where it continues to react with the 

catalyst. The resin leaving the reactor contains absorbed hydrocarbons. After degassing, the 

reactor produces a granular resin with a consistent particle size distribution which is readily 

pelletized. 

6.3.1 Validation of Fluid Dynamics for a PE Pilot-Scale Fluidized Bed 

In order to  validate the fluid dynamics using CFD, start-up cases were evaluated for which 

catalyst is not injected into the bed, and no product is removed from the bed. First, two- 

dimensional (2D) simulations were carried out for a pilot FB polyethylene reactor using MFIX. 

The height of the main reaction zone is on the order of 100-1000 cm, and will be refereed 

as L. The total height of the reactor with expansion and dome area is about 2 - 3 L. The 

diameter of the main reaction zone is in the range of 10-100 cm, and will be refereed as D. 

The diameter of the dome area is about 2.OD. The sketch of the PE pilot-scale fluidized bed 

reactor is shown in Fig. 6.2. Non-uniform Cartesian grids are used in 2D simulation and the 

number of grid cells are 127x251. In MFIX, it is hard to build a mesh for a complex reactor like 

this. In the simulation, a mesh for a larger rectangle is used, and then the red regions inside 
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Figure 6.1 Gas-phase fluidized bed olefin polymerization process (UNIPOL 
process) 

of the rectangle are set as no-slip wall (IVSW) to cut out the shape of the reactor (blue region 

in Fig. 6.2). Thus only about 60% cells are fluid cells among all the cells. For the boundary 

condition, at the bottom of the bed, gas is uniformly distributed, and a mass inflow (MI) for 

gas phase is specified. At the top, a pressure outflow (PO) is specified. If catalyst is injected 

into the fluidized bed, a mass inflow for solid phase is set at the inlet. If product is removed 

from the bcd, il mass outflow (MO) is set at the outlet. The typical operating conditions for 

gas-phase polymerization reactors are listed in Table 6.1. The mathematical model used in the 

simulation is described in Sec. 6.2.2, and the detail information about the gas and solid stress 

tensor and interaction force between phases are same its described in Chapter 3. For the drag 

model between gas and solid phase, the Gidaspow model is used in the simulation. 

Fig. 6.3 shows the instantaneous gas void fraction at the beginning of the.fluidization. 

The simulation results show slug-flow behavior, thereby confirming visual observations of the 

reactor through a high-pressure viewing port on the pilot plant reactor. However the predicted 

bed height from 2D simulation is 32% higher than the experimentally measured value. The 

simulation value for the average pressure drop between two pressure taps is only 21 mmHg, 
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Figure 6.2 Sketch of PE pilot-scale fluidized bed reactor 
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Table 6.1 Typical operating conditions for gas-phase polymerization reac- 
tors. 

Gas properties Units Value 
0.0221 

Viscosity, pg Pa.s 1.427 x 
Heat capacity, C,, cal/(g.K) 0.3-0.4 
Pressure, Pg bar 10-30 
Inlet temperature, Tg K 343-363 
Superficial gas velocity, ug cm/s 40-100 
Particles properties 
Density, ps g/cm3 0.843 
Heat capacity, C,, cal/(g-K) 0.168 

Density, p, g/cm3 

Average catalyst size Pm 10-100 
Average polymer particle size P m  1000 
Thermal conductivity, Xf caI/(cm-s-K) 3 - 7 x 1 0 - ~  
Monomer bulk diffusivity, Db cm2/s 2 - 6 x 
Effective diffusivity,  de^ Cm2/s I - 5 x 10-4 
Coefficient of restitution, e - 0.8 
Heat release of polymerization reaction, -AH, cal/mol 2.5 x 104 

and is lower than the experimental value of 29.30 mmHg. The average hold up for the 2D 

simulation is higher than the one from experiments. Since it is very important to match this 

value for validation of the fluid dynamics of the pilot-scale fluidized bed, the drag model was 

modified to match the bed height from expcriments. Results showed that by modifying the 

drag model, the bed height from 2D simulation is lower, and the pressure drop is closer to the 

experimental value. However the slug-flow behavior is no longer observed. 

According to a study by Peirano et al. (2001) on 2D and 3D simulation of a turbulent 

gas-solid fluidized bed, 2D simulation should be used with caution, and will be more likely to 

be successful in cases where the flow is by nature two dimensional. However, for industrial 

fluidized beds, the radial direction is very large and cannot he ignored. For this reason, a 3D 

simulation of the pilot-scale fluidized bed was carried out for comparison. Cylindrical grids are 

used in the 3D simulation and the number of grid cells are 28x 189x 12. Coarse grids are used 

in 3D simulation due to long running time. As in the 2D simulation, the geometry of the PE 

pilot-scale reactor is cut out from a larger cylindrical column, and only about 50% cells are 
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Figure 6.3 Instantaneous gas void fraction at 2 s, 4 s, 6 s, 8 s and 10 s from 
2D simulation. 

fluid cells and other cells are set as non-fluid cells. The instantaneous gas void fraction at the 

beginning of the fluidization for a 3D simulation is shown in Fig. 6.4. Similar to the 2D results, 

slug flow is observed at around 4 seconds. However, the differences between the results of 2D 

and 3D are striking: by simply adding a third dimension to the simulation, while keeping all 

other numerical parameter unchanged (same drag model), the expansion of the bed changed 

significantly. The bed height drops from 132% to 105% of the experimental value. Average 

hold up for the FB decreases and small bubbles appeared in the 3D simulation. The pressure 

drop along the two taps increased from 21 mmHg to 26.25 mmHg (Fig. 6.5). The pressure 

decreases almost linearly in the 2D and 3D simulations, however the slope of the pressure drop 

for the 3D simulation is lower than for the 2D simulation. 

Time-averaged gas-velocity fields for 2D and 3D simulations are compared in Fig. 6.6. The 

time-averaged solid-velocity fields for 2D and 3D simulation are similar to this profile. It is 

also clearly seen that the flow patterns for these two simulations are different. In the 2D case, 

the average gas velocities are lower and more symmetrical. In both 2D and 3D simulations, a 
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Figure 6+4 Instantaneous gas void fraction at 2 s, 4 s, 6 s, 8 s and 10 s from 
3D simulation. 
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Figure 6.5 Comparison of pressure drop along the two taps for 2D and 3D 
simulations. 

core/wall layer structure is observed, and gas (or solid) flow is predicted to occur in a downward 

direction along the wall. The average gas velocity at different heights, 0.24L, 0.27L and L,  is 

also compared in Fig. 6.6. For 2D simulation, the average solid velocity does not vary much 

at diffcrcnt heights. Howcvcr, for thc 3D simulation, the solid velocity in the middle decreascs 

with bed height. The maximum gas velocity in the middle exceeds 300 cm/s at a height of 

0.24L. 

The normalized pressure drop signal from experiment is compared with 2D and 3D sim- 

ulation in Fig. 6.7. The graph shows that the fluctuation of experiment data is very strong 

and with a higher amplitude. The signal for 2D simulation is relatively smooth compared to 

3D simulation, but both have a smaller amplitude. The bed pressure drop signal from ex- 

periment and simulations can be used to determine the power spectrum. These results were 

used to  fine tune the model to match the observed fluidized-bed dynamics. The power spectra 
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Comparison of time-averaged gas velocity for 2D (blue) and 3D 
(red) simulations. 

of the pressure fluctuations from experiments and 213, 3D simulations (100 Hz sample data) 

are compared in Fig. 6.8. In order to convert to the frequency domain, the discrete Fourier 

transform of the noisy signals of experiment and simulations are found by taking the 512-point 

fast Fourier transform (FFT). In Fig. 6.8, the blue line and green line are the 2D and 3D sim- 

ulation results and the red line is the experimental result. Fkom the results, we can also come 

to the conclusion that 3D simulation results match the experimental data better. The results 

at low frequency (the magnitude change to linear) are compared for experiment, 2D and 3D 

simulations in Fig. 6.9. The graph shows that 3D simulation can reproduce thc first and second 

peak in the experimental data, but with a higher magnitude. However 2D simulation can only 

get one peak and the frequency is in the middle of the two peaks. As expected, both 2D and 

3D simulations cannot reproduce the high frequency in the experiment data due to the limit 

of the model derivation (In the kinetic theory of the solid phases, higher frequency of collisions 

of particles is ignored during model derivation). Usually the first peak indicates the frequency 

of slug flow, so the energy for 3D simulation is a little bit higher than the experimental data. 

Three-dimensional PE pilot fluidized-bed simulations are computationally expensive, even 
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Figure 6.7 The normalized pressure drop signal for experiment, 2D and 3D 
simulations. 
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Figure 6.8 The power spectra of the pressure fluctuation from experiments, 
2D and 3D simulations 



130 

1.2 

1 I I I I I 

2D: FFT: Nfft = 512 
3D: FFT: Nfft = 512 
Exp.: FFT: Nfft = 512 

- 
- - 

- 

0 1 2 3 4 5 6 7 
Frequency 

Figure 6.9 Power spectra results at low frequency from experiments, 2D 
and 3D simulations, 

when a parallel code (Distributed Memory Parallelization) for multiprocessors is used to reduce 

the computation time, Multiprocessor performance €or the 3D simulation is compared for 2, 4, 

8, 16 and 32 processors in Table 6.2. The grids number on radical direction (I direction) is 28, 

on vertical direction (J direction) is 189 and on azimuthal direction (K direction) is 12. The 

influence of the parallelizatiou direction was also investigated and the results for speed up (Sn) 

and efficiency (En) for 3D simulation are presented in Fig 6.10 and Fig. 6.11. Parallelization 

in the vertical direction (J direction) has the maximum speed-up value and best efficiency. 

By using 4 processors in the J direction, the speed up can reach to 3.28 and the efficiency is 

81.97%. If the processors increase to 8 and 16, the speed up increases to 5.50 and 8.47 with 

an effciency of 68.74% and 52.91%. The speed up increase with the increase of the number 

of processors, but the efficiency decreases at  thc samc time. With the trade off between the 

computation time and computer resources, 8 processors were chosen for this 3D simulation. 
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Table 6.2 Multiprocessor performance for 3D simulations using 2, 4, 8, 16 
and 32 processors. 

Number of process CPU Time(s) Wall Time (s) Sn En (%) 
1 1=1 J = l K = l  55855 55970 1.00 100.0 

2 I = l 3 = 2 K = l  
2 I = 2 J = l K = l  
2 I= l3=1K=2 

4 1-1 J=4K=1 
4 1==2 J=2K=1 
4 1 = 4 J = l K = l  
4 1=1 J=2K=2 

8 1=1 J=8K=l  
8 1=2 J=4K=l  
8 1=4J=2K=l  
8 I=l J=4K=2 

16 1=1 J=16K=l 
16 1=4J=4K=l  
16 1=2 J=8K=l  

35399 
37470 
50385 

16963 
19104 
24321 
32727 

10070 
10486 
12758 
16567 

6496 
6995 
7334 

35497 
37572 
50497 

17070 
19211 
24435 
32844 

10178 
10599 
12875 
16686 

6611 
7115 
7452 

1.58 78.84 
1.49 74.48 
1.11 55.42 

3.28 
2.91 
2.29 
1.70 

5.50 
5.28 
4.35 
3.35 

8.47 
7.87 
7.51 

81.97 
72.84 
57.26 
42.60 

68.74 
66.01 
54.34 
41.93 

52.91 
49.17 
46.94 

32 I=2 J=16 K = l  4586 4714 11.87 37.10 
32 I=l J=32K=l 4690 4823 11.60 36.27 
32 1=4 J=8K=l  4981 5111 10.95 34.22 
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Number of processors 

Figure 6.10 Speed up for 3D simulations of pilot-scale fluidized bed using 
2, 4, 8, 16 and 32 processors on hpc3. 
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Figure 6.11 Efficiency for 3D simulations of pilot-scale fluidized bed using 
2, 4, 8, 16 and 32 processors on hpc3. 
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6.3.2 Chemical Reaction Engineering Model and Kinetic Parameters Study 

After validation of the fluid dynamics for start-up cases, the work on incorporating the 

energy, species, and population balance equations was undertaken. However, the solid phase 

residence time for a PE polymerization reactor is on the order of hours, and the fluid dynamics 

of a fluidized bed is on the order of seconds. It is intractable to run a 3D simulation for hours 

using the current CFD code. Hence, the time scale for fluid dynamics and polymerization 

reaction is separated in the following work, and the polymerization reaction equations are 

solved outside of CFD simulation. The CFD simulations is initialized to a steady state with a 

distribution of particle size, age time and temperature. In order to accomplish this, a reaction- 

engineering model based on the age of particles was used. The simulations started with this 

steady state and were run for a few seconds. During this short period, since the polymerization 

reaction is so slow, we can assume that the particle will not grow and the particle temperature 

will not change due to reaction. 

In the reaction engineering model, it is assumed that the gas phase is at steady state, so 

equations for the gas phase from multi-fluid model do not need to be solved. The equations 

for the solid phases from the multi-fluid model are solved using an ODE solver in Matlab 

after dropping the inhomogeneous terms. Thus, the equations for the engineering model are 

as follows: 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

where CM = p s X s ~ / M w .  r is residence time of the particles. If we assume the solid phase in 

the fluidized bed a s  a well-mixed CSTR, then the particle residence time distribution function 
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(RTD) is: 
1 h(7)  = -e-+s. 

T S  

rs is the mean residence time, for a typical PE reactor, it is around 1-10 hours. 

The mass/heat transfer and heat produced from polymerization reaction are same a s  de- 

scribed before in the multi-fluid model. If no aggregation and breakage are considered, the 

solid void fraction relates to  the particle diameter by a constant, and E, = CL:. The constant 

c correspond to the number of particles per unit volume and can be estimated from average 

hold up in the fluidized bed from experiment. Since the average hold up is: 

( E s )  = iw Es(7)h(7)d7 = c r L2(7)h(T)dT. 
The corresponding initial conditions for Eq. 6.27-Eq. 6.32 are: 

(6.33) 

(6.34) 

3 es = cLsO,Ts = T g , X s ~  = 0, 

0 [c] = [cg], [c*] = 0 ,  [c ] = 0. 

(6.35) 

(6.36) 

It is difficult to get the initial potential active catalyst site concentration from experiment, 

so in the simulation, [q] is estimated from the production rate of the polymer by forcing the 

average particle size equal to the measured average polymer particle size. The average particle 

size can be calculated as: 

(L,) = Srn Ls(7)h(7)dT. 
0 

(6.37) 

First, the chemical reaction engineering model is used to fit the experimental data and 

obtain the kinetic rate parameters. A set of experiments were conducted at Univation Tech- 

nologies around a center point for different flow-feed ratios of comonomer/ monomer and 

hydrogen/monorner in the lab reactor (see Table 6.3). Three experiments were conducted at 

three temperatures (indicated by low, middle and high temperature). The reaction rates of 

monomer R M , ~ ~ ~ .  are available €or each case at different temperatures from lab reactor. In 

order to do the fitting, the reaction rates of monomer at different temperatures are calculated 

from the chemical reaction engineering model using a two site model (i indicates different site 
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Table 6.3 Different cases conducted in Uriivation Technology €or a lab re- 
actor. 

1 low low 
2 low high 
3 high high 
4 high low 
5 center center 

type, i = 1,2), and 

(6.38) 
i=1,2 i=1,2 

The optimization tool box -Zsqcurvefit in Matlab is used to do the three curves fitting (Matlab 

codes are: drive-fitting.m, objfunc.m, odefunc.m), and the minimum value of ~ ( R M  -RM,~=~)’ 

is determined with the best fitted rate constants and activation energies ki, kp ,  kd, AEi, AE, 

The comparisons of model fitting with lab data for Case 1 to 5 are shown in Fig. 6.12- 

6.16. The kinetic rate data for Case 1-5 from model fitting at middle temperature are listed in 

Table 6.4. Generally speaking, the two site model fit the curves quite nicely, and the initiation 

rate data can be determined with a high degree of accuracy. The initiation rates for both sites 

at middle temperature varied by a factor of 5. The propagation rate for both sites varied by a 

factor of 5. First site has fast decay, and the rate varied by a factor of 2 and the second site has 

slower decay and the decay rate is small and varied by a factor of 6. These rate data are very 

useful and they can be used to model singIe particle temperature rise for each case and later 

it will be used to investigate the hot spots in the fluidized beds in the multi-phase simulation. 

Since case 5 has the highest “peak” at the beginning when the operation temperature is high, 

this case is the worst case for particle overheating. 
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Case 

Table 6.4 Kinetic rate data (Ink = lnko - AE/RT) for Cases 1-5 obtained 
from two sites model fitting at middle temperature [normalized 
by the rate data of case 5 (site 2)]. 

h i  tiat ion Propagation Decay 
lnko,i -AEi/RT, lnko,p -AEp/RTs lnko,d -AEd/RT, 

1 (hr-l) 
1 Site 1 0.6018 7.34 

Site 2 0.4842 9.71 
2 Site 1 0.6761 6.68 

Site 2 1.1735 -3.55 
3 Site 1 0.5818 9.14 

Site 2 1.6884 -12.38 
4 Site 1 0.6871 8.376 

Site 2 0.4975 9.68 

(dgcat-hr) (hr-') 
1.671 -10.82 0.8190 5.24 
1.502 -8.66 3.8692 -35.97 
1.3236 -4.88 1.0628 2.57 
0.9486 0.33 1.8518 -10.35 
1.0729 -1.29 
0.6912 5.03 
1.3746 -10.66 0.7972 
1.5085 3.8757 -35.88 

5 Site 1 
Site 2 

0.8890 4.9 I 0.0880 10.86 

0.8975 -21.17 
1.00 0.00 0.00 

" ' " I 1  OO 0.2 0.4 0.6 0.8 I 1.2 

Time 

Figure 6.12 Two sites model fitted with experimental data for Case 1. 
Red: high temperature; Green: middle temperature; Blue: 
Low temperature) (the reaction rate and time are scaled by a 
constant). 
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R2=0.9194 

Time 

Figure 6.13 Two sites model fitted with experimental data for Case 2. 
Red: high temperature; Green: middle temperature; Blue: 
Low temperature) (the reaction rate and time are scaled by a 
constant). 

R2=0.6307 

0 0.2 0.4 0.6 0.8 1 1.2 

Time 

Figure 6.14 Two sites model fitted with experimental data for Case 3. 
Red: high temperature; Green: middle temperature; Blue: 
Low temperature) (the reaction rate and time are scaled by a 
constant). 
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Time 

Figure 6.15 Two sites model fitted with experimental data for Case 4. 
Red: high temperature; Green: middle temperature; Blue: 
Low temperature) (the reaction rate and time are scaled by a 
constant). 

I 
0.2 0.4 0.6 0.8 I 1.2 0' 

0 

Time 

Figure 6.16 Two sites model fitted with experimental data for Case 5. 
Red: high temperature; Green: middle temperature; Blue: 
Low temperature) (the reaction rate and time are scaled by a 
constant). 
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6.3.3 Effect of Catalyst PSD on the Overheating and Final Polymer PSD 

Commercial gas-phase reactors are critically dependent upon good mixing for heat removal 

and prevention of sintered polymer agglomerates. It has been found that to a large extent, 

good mixing is related to the polymer particle size and the distribution of these particle sizes 

in the bed. The polymer particle size distribution is governed by the feed catalyst'particle 

size. These catalyst particles grow by a factor of 15-20 at a rate determined by the intrinsic 

kinetics of the polymerization. This time dependent process generates the resulting polymer 

particle size distribution in the fluid bed reactor. The polymer represents over 99.9% of the 

total bed mass, So far most models have taken the catalyst particle as a single particle size 

with an average value. However the large particles produced by the polymerization reaction 

can not be predicted using such an assumption and more importantly it underestimates the 

overheating in the fluidized bed. 

In this work, QMOM is combined with chemical reaction engineering (CRE) model to study 

the effect of catalyst PSD on the overheating and final PSD of polymer. The flow chart of the 

process is shown in Fig. 6.17. First, moments of catalyst are calculated from its distribution 

function f(L). In order to consider the effect of catalyst PSD, by using QMOM, two or three 

nodes can be used to represent; the underling distribution, each node has its own diameter and 

weight. The CRE model is applied to each node by assuming that the initial particle size L,o 

has the diameter of the node. With CRE model, the evolution of particle diameter with age 

for each node can be obtained. According to the definition of moments, the moments of final 

product for each node can be obtained by integrating each curve with its age distribution. If 

there is no aggregation and breakage, the number of particles will not change and the weight 

for each node will not change, thus, the moments of final polymer can be calculated a s  a sum 

of weighted moments of each node. The detailed information of this method and results will 

be shown in this section. Once we know the moments of polymer, by using QMOM, two or 

three nodes can be used to  represent the PSD of the polymer. Meanwhile, with the C W  

model, the particle diameters are associated with particle temperature. A 3D CFD simulation 

is conducted to investigate the segregation and hot spots in the fluidized bed. The detailed 
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information about the 3D simulation is described in Sec. 6.3.5 

The catalyst size distribution from experimental data is plotted in Fig 6.18. The distrib- 

ution is a log-normal distribution but with a small ”bump” at the low end of the PSD. The 

average particle size is in the range of 10-100 prn, it will be refereed as d,,, and the stan- 

dard deviation is around 25 prn. The normalized moments of the catalyst distribution can be 

calculated from the definition: 

mk,catalyst  = i+* f(L)LkdL (6.39) 

and the first six moments are: r n o  = 1.0,ml f=: 6.618132 x l W 3  cm,mz = 4.825101 x 

cm2,m3 = 3.835720 x cm3,m4 = 3.298252 x cm*,mg = 3.035996 x cm5. 

With QMOM, two or three nodes can be used to represent the catalyst distribution. If two 

nodes are used, one node is 0.91d,,, and the second node is 1.71dave, The weight percentage 

of the first node is 63.87% and the second node is 36.13%. If three nodes are used to represent 

the PSD, the three nodes are 0.69da,,, 1.25d,,e and 2.03da,,. The percentage of the weight 

for each node is: 24.57%, 63.81% and 11.62%, respectively. 

As we know, case 5 is the worst case for particle overheating, so the kinetic rate data for 

case 5 itre used in the following discussions. If two nodes are used for representing the catalyst 

PSD, the chemical reaction engineering mode is employed for each node. The evolutions of 

particle size and temperature rise with age using two nodes are plotted in Fig. 6.19 and 6.20. 

For each node, the moments of the PSD of polymer can be obtained by integrating the length 

over the particle age distribution in the bed. The kth moment of PSD for each node can be 

written as: 

(6.40) 

If two nodes are used, the moments of the final polymer are found from weighted averages: 

(6.41) 

where w1 = 63.87% and w2 = 36.14% as discussed earlier. By integrating the two curves 

in Fig. 6.19 from zero to t f  = 80 hr (a time between 10-20 times of mean average resident 

time), the moments of the predicted size distribution can be determined, and rng = 1.0, ml = 
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Calculate moments of catalyst 
PSD from experiment. 

4) 

the catalyst PSD. 

Chemical Reaction 
Engineering model 

node, get the curve of L 
change with age. 

Integrate each curve over 
particle age distribution and 
calculate the moments for the 
final polymer. 

QMOM, 
PD algorithm 

Use a few of nodes represent 
the final polymer PSD, run 
CFD simulation with those 
nodes, and investigate the 
segregation and hot spots in 
the FB. 

Figure 6.17 Flow chart of combining QMOM with CRE model to investi- 
gate the effect of catalyst PSD on the overheating and final 
polymer PSD (drivc+moments.m, odefunc.m, quad.m). 
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9 

Particle size L 

Figure 6.18 Catalyst particle size distribution. 

1.305570 x 10-I cm, m2 = 1.903549 x cm2, m3 = 3.010876 x cm3, m4 = 5.079755 x 

cm5. The standard deviation (0) of the polymer PSD and cm4,m5 = 9.024098 x 

the "width" of the distribution can be calculated from those moments: 

If three nodes are used for representing the catalyst PSD, for the first node, the three 

nodes are 0.69du,,,, 1.25da,, and 2.03du,,. The evolutions of the particle size and temperature 

increase with age using three nodes are shown in Fig. 6.21 and Fig. 6.22 respectively, Similar 

to two nodes, the moments of this distribution can be calculated by: 

(6.42) 

where w1 = 24.57%, w2 = 63.81% and w3 = 11.62%. By integrating over the three curves 

in Fig. 6.21, the moments of the predicted size distribution are: mo = 1.0,ml = 1.304596 x 

lO-lcm, m2 = 1.904223 x 10f2cm2, m3 = 3.011871 x 10-3cm3,m4 = 5.075125 x 10""4cm4, m5 = 

9.013480 x 10-5crn5. The "width" of the distribution can be calculated from those moments, 
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Figure 6.19 Evolution of particle diameters with age using two nodes for 
case 5. 
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Figure 6.20 Evolution of particle temperature rise with age using two nodes 
for case 5 .  
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Figure 6.21 Evolution of particle diameters with age using three nodes for 
case 5. 

and 

Note that these moments are slightly different than those found earlier with two nodes. 

Presumably, using three nodes should yield higher accuracy because it should yield a better 

representation of the log-normal distribution of catalyst PSD. And also notice that, the highest 

relative temperature increase by using three nodes is around 0.9, it is much higher than the 

highest relative temperature increase using two nodes, around 0.56. So using one or two nodes 

to represent the underling distribution underestimates the overheating problem in the bed. 

Thus in future discussions, the catalyst PSD is represented by three nodes. 

Some moments have special meaning, such as mo represent the total particle number den- 

sity, in here rno is normalized to a unity. m1 indicates the average particle size, m2 is related 

to the particle area and 7-1-13 is related to the total particle volume. In the simulations, in order 

to compare the results with experimental polymer PSD data, ml the average particle size is 

matched to the experimental value by changing the initial catalyst site concentration. Accord- 

ing to the size distribution data obtained from Malvern's particle size analyzer, the moments 
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Figure 6.22 Evolution of particle temperature rise with age using three 
nodes for case 5. 

for the final polymer are: r n g  = 1.0,ml = 1.297835 x 1Of1cm,m2 = 1.852021 x 10-2cm2,mg = 

2.854163 x 10-3cm3,m4 = 4.678335 x 10-4cm4,m5 = 8.054136 x 10-5cm5. The “width” in 

this case is: 

c.v = = d=/rn~ = 0.31548. 

Comparing the PSD from the reaction engineering model with the experimental data, 

the prediction overall is good, but the simulation has a higher standard deviation and larger 

width. This difference may be due to the assumption that the particles are well mixed (i.c, no 

segregation due to size), or due to how the experimental PSD is measured (i.e., at the outlet 

or taken from samples higher up in the bed). 

The particle size distribution probability plot for the initial catalyst PSD and the final 

polymer PSD are shown in Fig. 6.23 as a solid line. The cumulative percent estimated from 

&MOM (three nodes €or final polymer distribution) using two or three nodes to represent 

underling catalyst distribution are also shown in Fig. 6.23 as symbols. We can see that the 

model predicts slightly larger particles as compared to the experimental data. Nevertheless, the 

overall predictions appear to be very good, indicating that combining the reaction engineering 
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model with QMOM is a promising method for predicting the polymer PSD in a PE reactor. The 

moments calculated from catalyst PSD (either using 2 or 3 nodes) are very similar. However, 

with three nodes t o  represent the catalyst PSD, we find a higher temperature increase for the 

final node. (Compare Figs. 6.20 and 6.22). The temperature profile in the bed is affected by 

the catalyst PSD. The larger the mean catalyst size, the larger the final polymer particle and 

the higher peak temperature increase in the solid phase. Also the breadth of catalyst PSD 

are important, since when the “width” increase, the nodes are more widely distributed and 

the biggest node have high chance to be overheated. Thus, in order to investigate the hot 

spots in the bed it is very crucial to represent the upper tail of the catalyst size distribution 

using QMOM. As we can see in Fig. 6.23, the tail is most accurately represented in QMOM by 

using N=3 (or more) nodes, so three nodes are choose in the following work. With Fig. 6.21 

and 6.22, the information on the percentage of polymer particle above a certain temperature 

can be determined and it is plotted in Fig. 6.24. The graph shows for case 5, only less 

than O,l% polymer’s relative temperature increase is over 0.6 and most polymer particle’s 

relative temperature increase (about 97%) is low, only 0-0.2. Such graphs are very useful in 

designjng catalyst in industrial in future and the catalyst is designed to control the percentage 

of overheating particles in the range of 1-5%. 
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Figure 6.23 Comparison of PSD of catalyst and polymer with predicted 
PSD horn QMOM using two nodes or three nodes for case5. 

Figure 6.24 Percentage of polymer particle above a certain .temperature 
for case 5. 
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Figure 6.25 Evolution of particle temperature rise with particle size using 
three nodes for case 1. 

6.3.4 Effect of Intrinsic Kinetics on the Overheating and Final Polymer PSD 

Combining the C€lB model and QMOM, it is possible to study the effect of intrinsic kinetics 

on the temperature rise of a growing polymer particle. The evolution of particle temperature 

rise with particle size using three nodes for cases 1-5 axe plotted in Figs 6.25-6.29. As we 

can see, the temperature rise profile are different for each case, case 5 is the worst case for 

particle overheating, the relative temperature rise is about 0.9 for the biggest node. Case 4 has 

the lowest temperature rise compared to other cases. Also notice in the graphs, the intrinsic 

kinetics affects the final polymer PSD. Case 1 and 4 tend to  produce Iarger particles than other 

cases, and the largest rclative sized particle is around 1.8. The final polymcr PSD predicted 

horn CRE model for all the cases are compared with experimental data (case 5) in Fig 6.30. 

Similar to case 5, the model predicts slightly larger particles as compared to the experimental 

data, but overall, the prediction is good. 
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Figure 6.26 Evolution of particle temperature rise with particle size using 
three nodes for case 2. 

I 

Figure 6.27 Evolution of particle temperature rise with particle size using 
three nodes for case 3. 
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Figure 6.28 Evolution of particle temperature rise with particle size using 
three nodes €or case 4. 

Figure 6.29 Evolution of particle temperature rise with particle size using 
three nodes for case 5. 
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Particle size 

Figure 6.30 Comparison of PSD of catalyst and polymer with predicted 
PSD from QMOM using three nodes for case 1 to case 5. 

6.3.5 Investigation of Particle Segregation and Hot Spots in a Fluidized Bed 

Using CFD 

After successfully predicting the final polymer PSD, the moments are known, using QMOM, 

the PSD can be represented by two or three nodes in the CFD code to investigate the seg- 

regation and “hot spots”. Since case 5 is the worst case for the overheating, the following 

discussion uses the kinetic rate data from this case. For case 5, the predicted moments for the 

final polymer PSD are: rno = 1.0,ml = 1.304596 x 10-1 cm,rn2 = 1.904223 x cm2,m3 = 

3.011871 x cm5. Wsing the PD 

algorithm, three nodes can be used to represent this PSD, they axe 0.288, 0.664 and 1.038 (di- 

mensionless by I,,,,). For each node, according Fig. 6.29, the temperature and age associated 

with this node are listed in Table. 6.5. Since in CFD simulation, we are not able to track the 

age time of a particle, for each particle size the highest possible relative temperature rise is 

0.616, 0.172 and 0.06, the lowest possible temperature rise is 0.052, 0.056 and 0.06, and the 

average temperature rise is 0.285, 0.114 and 0.06. 

cm3, r n d  = 5.075125 x cm4, m5 = 9.013480 x 
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Node Relative particle diameter Relative temperature increase 
a = l  0.288 0.616 

0.188 
0.052 

a = 2  0.664 0.172 
0.056 

a = 3  1.038 0.06 

Relative age 
0.0275 
0.0875 
0.28 
0.39 
1.145 
1.995 

A 3D simulation was run in the pilot scale fluidized bed with these three nodes, and the 

average particle size (normalized by the average particle size in the bed) along the bed height 

is plotted in Fig. 6.31, not much segregation was observed at the bottom of the bed, and the 

average particle size at the bottom is only about 1.1 times of the average size for the whole 

bed. However, most segregation is observed in the expansion and dome area. The average 

particle size at the top is only 50%-60% of the average particle size in the bed. Since we know 

that most sheeting problem happen in the expansion area, the number of particles for each 

node at this region are plotted in Fig. 6.32. From the graph, it is clearly to see that small 

particles are dominated in the expansion area. Although the number of small particles are 

very small (less than 50), small particles have high temperatures, hot spots are more likely to 

be observed. The average particle temperature rise profile for this simulation at 15 s is shown 

in Fig. 6.33 and the average solid temperature T, is: 

(6.43) 

n o m  the graph, we can see that in the main reaction area, the temperature is almost uniform 

and without hot spots. However, in the expansion region, the average particle temperature 

are much higher. Those information will help us on locating the possible “hot spots” and 

agglomeration in the fluidized bed in the future. 

6.4 Conclusion 

2D and 3D simulations are conducted for a pilot-scale fluidized bed to  validate the fluid 

dynamics. The simulations results for bed height, pressure drop along the two pressure taps 
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Figure 6.31 Average particle size along the bed height. 

and pressure fluctuation signal are compared with available experimental data. Significant 

differences are observed between 2D and 3D simulations. The results shows that, for an 

industrial-scale fluidized bed, only 3D simulations are able to  match statics (bed height and 

pressure drop) and the dynamics (pressure power spectra) properties of FB because of the 

natural three dimensionality of the flow. The 3D simulations have good agreement with exper- 

iment data on the bubble hequency and can describe the dynamic movement of the particles 

in the fluidized bed. Due to the different time scale for polymerization reaction and fluid 

dynamics, the polymerization reaction is solved outside of CFD simulation. The CRE model 

is solved in MatZab using the ODE solver, and the particle size, age and temperature distri- 

bution at steady state can be determined with this model. The catalyst PSD is represented 

by a few nodes using QMOM. Combining CRE and DQMOM, the final polymer PSD can be 

predicted with higher accuracy. Then a 3D simulation is conducted hom this steady state 

and segregation and hot spots in the fluidized bed are investigated in the CFD simulation. 

For future work, the 3D simulation should incorporate the population balance to investigate 

aggregation and breakage of polymer particles. In a later stage, the electrical force component 

will also be incorporated into the multi-fluid model to determine the effect of particle charging 
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Figure 6.32 The number of particles for each node at 15 s, a: first node b: 
second node c: third node. 

on the particle size distribution and overheating. After the work on validation of pilot-scale 

PE polymerization reactor, the validation on the commercial fluidized bed will be undertaken. 
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Figure 6.33 Average particle temperature rise profile at 15 s. 
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CHAPTER 7. Conclusion and Future Work 

Gas-phase reactors are widely used in the polymerization industry due to their superior 

heat- and mass-transfer characteristics. However the detailed mathematical modeling of poly- 

merization FB reactors is very complex and poses many challenges for us. In this work, a CFD 

algorithm for simulation of FB polymerization reactors is described. In order to rigorously 

account for the particle related phenomena, such as aggregation, breakage and growth, PBE 

must be solved along with other equations to describe the distribution of particle size in the 

bed. A novel approach - DQMOM is applied to  polydisperse fluidized bed to solve PBE effi- 

ciently and effectively. DQMOM is an extension of QMOM, and also based on the solution of 

the PBE through its moments. However, compared to QMOM, each node has its own velocity, 

make it easily to  implement into multi-phase CFD code. The DQMOM-Multi-Fluid model 

is developed by applying moment approach t o  the PBE for multi-fluid phase. For simplicity, 

the model is tested in a cold bed without chemical reaction, and the PSD change only due to 

aggregation and breakage. Simulation results show that the DQMOM-multi-fluid model is an. 

effective approach to  represent the evolution of the PSD due to aggregation and breakage in 

FB reactors. Constant aggregation and breakage kernel and the kernel developed from kinetic 

theory are implemented. Results show that the model predictions are very similar results for 

N = 2 - 4, however, for some cases, using three or four nodes produced similar results which are 

different than those found in two nodes. Considering the computational time increased with 

more nodes used, three nodes appears to be a good choice for representing FB reactors. The 

effect of the success factor for aggregation was also investigated for the kinetic theory kernel, 

a high success factor for aggregation leads to a shorter time for reaching defluidization. The 

effect of fragment distribution function is also studied. The results show that erosion causes a 
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delay in the dynamic response of the mean particle size compared to symmetric fragmentation. 

Erosion is a less effective breakage mechanism in the presence of aggregation. 

After successfully developed the multi-fluid CFD model for polydisperse gas-solid flow, the 

next step is to valid the multi-fluid model with available experiments and simulation results 

to describe the mixing and segregation behavior in the gas-phase reactor. The multi-fluid 

model for polydisperse fluidized beds was studied for a binary system and a few systems 

with continuous PSD. The CFD simulations €or the binary system are compared with the 

experiments conducted by Goldschmidt et al. (2003) for glass beads, the simulation results 

agree satisfactorily with the experimental data. At high gas velocity, the fluidized bed is fully 

fluidized so that excellent mixing is achieved and the segregation rate is low, around 0.1. In an 

intermediate gas-velocity range, transient fluidization takes place where in the bed is initially 

uniformly fluidized and then segregation gradually occurs. In the end, the large particles go 

to the bottom and the small particles move to  the top so that there is a defluidiaed bottom 

rich in jetsam and a top layer rich in flotsam. The relative segregation rate is also much higher 

(usually around 0.3-0.4). 

With the good agreement between simulation and experimental data for binary systems, 

segregation phenomena in gas-solid fluidized beds with a continuous PSD are investigated. For 

this study, the simulation results are compared with the discrete-particle simulations of Dah1 

and Hrenya (2005). Using the moments of the PSD from the discreteparticle simulations, 

the weights and abscissas (or nodes) used in DQMOM are initialized in the multi-fluid model. 

The segregation rate and the local moments of the PSD predicted by the multi-fluid model are 

compared to the discreteparticle simulations. Four systems are choose to do the comparison. 

The first three systems had a Gaussian distribution. System 1 had a wide distribution with 

oldave = 0.3 and System 2 has the same distribution as System 1 but with a higher superficial 

gas velocity. System 3 had a narrow distribution with oldave = 0.1. The last system (System 4) 

had a log-normal distribution with o / d a V e  = 0.5. As expected, the wide Gaussian distribution 

showed more Segregation than the narrow one, and the lognormal distribution showed the 

greatest segregation. Increasing superficial gas velocity generated more bubbles, better mixing, 
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m d  reduced the segregation. The results showed that the multi-fluid model can reproduce the 

segregation along the bed height, but can not reproduce the lateral segregation across the bed 

observed in DPS simulations. The effect of the node numbers was also studied. The results 

showed that, when the distribution was narrow or the superficial gas velocity was high, the 

mixing dominated the segregation, and less nodes were needed. For a wide distribution with 

strong segregation, at least three nodes were needed to represent the underling distribution. 

After the model development and validation for the polydisperse gas-solid flow, CFD valida- 

tion of a PE pilot-scale gas-phase reactor is undertaken. 2D and 3D simulations are conducted 

for a pilot-scale fluidized bed to valid the fluid dynamics. The simulations results for bed 

height, pressure drop along the two pressure tap and pressure fluctuation signal are compared 

with available experimental data. Significant differences are observed between 2D and 3D sim- 

ulations. The results shows that, for an industria-scale fluidized bed, only 3D simulations are 

able t o  match the statics (bed height and pressure drop) and the dynamics (pressure power 

spectra) properties of the bed because of the natural three dimensionality of the flow. The 3D 

simulations agree fairly well with experiment data on the bubble frequency and can describe 

the dynamic movement of the particles in the fluidized bed. For the next step, the polyrner- 

ization reaction, heatlrnass transfer model are developed for PE pilot-scale fluidized bed. The 

residence time for a PE pilot reaction is on the order of hours, and the fluid dynamics is on 

the order of seconds. It is impossible to run a three-dimensional simulation for hours using 

current CFD codes. Due to the different time scale between reaction and fluid dynamics, a 

CR.E model based on the age of particles is used to initialize the fluidized bed to a steady state, 

which has a presumed distribution of particle size, age and temperature. The catalyst PSD 

is represented by a few nodes using QMOM. Combining CRE and QMOM, the final polymer 

PSD can be predicted with higher accuracy. Then a 3D simulation is conducted to investigate 

segregation and hot spots in the bed. Results shows there is not much segregation in the main 

reaction area, and the temperature profile in the fluidized bed is almost uniform. However 

most segregation appear in the expansion area and dome area. Small particle are dominated 

in this area and since small particles have high temperature, hot spots are observed in this 
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area. 

For the future work, the CFD model for polydisperse reacting gas-solid flow with aggre- 

gation and breakage has been successfully developed, but need to be validated with available 

experimental data. Currently, a constant aggregation and breahge kernel and the kernel from 

kinetic theory are tested, the kernel depend on particle temperature need to be developed and 

tested. For the work on CFD validation of a PE pilot-scale fluidized bed, the 3D simulation 

should also incorporate the population balance to investigate aggregation and breakage of poly- 

mer particles. In a later stage, the electrical force component will also be incorporated into the 

multi-fluid model to determine the effect of particle charging on the particle size distribution 

and overheating. After the work on validation of pilot-scale PE polymerization reactor, the 

work will be extended to commercial fluidized bed to study the scale-up. 
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APPENDIX Matlab codes used in Chapter 6 

Calculate the lengths and weights of a PSD using PD algorithm. (quad.m) 
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for i=l:n/Z. 

z (i , i) =alf a(Z*i) +alf a (2*i-1) ; 
end 

for i=l:n/2.-1. 

z(i,i+l) = -(abs(alfa(2*i+l)+alfa(2*i)))^O.5; 

z(i+i,i) = -[a~s(alfa(2*i+l)+alfa(Z*il))-0.5; 

end 

[autovettori,autovaloril=eig(z); 

f o r  i=i:n/2. 

v(i)=autovettori(l,i)-Z*m(l); 

end 

for i=i:n/Z. 

a(i)=autovalori(i,i); 

end 

Two site model fitting. [drivesttingm, objfunc.m, odefunc.m] 

Load experiment data experiment-hh, the first element is time t(min), and the 

% second, third, forth elements are the reaction rate at lou, middle and high 

x temperature, then put them into t-matrix and y-matrix. 

load experiment-c.dat; t=experiment-c(:,1)/60.0; 

yl=experiment-c(:,2); yZ=experimant-c(:,3); y3=experiment-c(:,4); 

w=[l,i,iI ; t-matrix=Ct,t,tJ; y_matrix=Lyl,y2,y31 : 

X Input: Initial guess for the rate constant and activation energy for site I and 2 

Site 1: keO(l)=k_i, ke0(2)=k-d, ke0(3)=k-p, 

x ke0(4)=delta-E-i, ke0(5)=delta-E-d, keOCG)=del+a-E-p 

1 Site 2: ke0(7)=k-i, keO(S)=k-d, ke0(9)=k-p, 

% keO(IO)=delta-E-i. keO(ll)=delta-E-d, keO(l2)=delta-E-p 

keO= [I ; 
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X Output: Return the final value for ke and resnorm (squared 2-norm of the residual) 

1 using toolbox-lsqcurvefit 

~ke,resno~,residual,exitflag]=lsqcurvefit~~objfunc,keO,t~matrix,y~matrix~; 

ke 

resnorm; 

X Input data 

X tspan: time, 

X C and a: constants, explained in Chapter 6 

1 d0:initial catalyst diameter 
% epsO and c0:initial solid void fraction and initial concentration 

1 pgm: effect of pressure 

DeA: effective diffusivity 

X TI T2 T3: low, middle and high temperature 

tspan=t-matrix(:,l); C=; a=; do=; epsO=(dO)-3.0*pi/6.O*C; 

cO=(d0)̂ 3.0*pi/6.0; p@=; DeA=; T1=; T2=; T3=; 

Initial value for yo-1 C91, yO-2[9], y0-3[9] at low, middle and high temperature 

X The nine elements are: 

X initial value for solid void fraction, initial value for potential 

X active site, active site, dead site for site l(multip1y by solid void 

Y, fraction), initial value for potential active site, active site, 

X dead s i t e  for site 2 (multiply by solid fraction), initial value f o r  

mass fraction of monomer in solid phase (multiply by solid fraction), 

initial value f o r  solid temperature. 

yOli=[(dO)-3 .O*pi/6.O*C, (do) -3.O*pi/6 .O,O.O,O .O, (do) -3 .O*pi/6.0,0.0 ,O. 0,O. 0 ,T1] ; 

y0-2=C(d0)-3.0*pi/6.O*C, (d0)~3.0*pi/6.0,0.0,0.0, (d0)-3.0*pi/6.0,0.0.0.0,0.0 ,T2] ; 

YO_3=[(dO) "3.O*pi/G.O*C, (d0)-3.0*pi/6 .O,O.O,O.O, (d0)~3.0*pi/6.0,0.0,0.0,0.O,T3] ; 

X Use ODE solver t o  solve reaction engineering model at different temperatures 

options=odeset('RelTolJ,l.0e-6, 'AbsTol', 1 . k - 8 )  



174 

[x ,y-Tl-f 3=odel5s(~adefurrc, tspan,y0-1, options,ke, TI) ; 

[x,y_T2_fl=ode15s((Dodefunc,tspan,y0_2,option~,ke. T2) ; 

[x ,y-T3-f J=ode15s((Podefunc,tspan,y0-3, options,ke, T3) ; 

% Low temperature 

srnall-number=l.Oa-20; 

dia-T1=( (y-Ti-f ( : , ll/C)*6. O/pi) .-(l. 0/3 .O) ; 

phil_Tl=a*p~*(dia-TI/Z.O) .* sqrt(exp(ke(3))*exp(ke(6)*1000./ ... 
(1.9872*y-Tl-f (: ,9))) .*abs((C*y-Ti-f(: ,3) ./y-Tl-f (: ,l)))/DeA*small-number); 

etal_T1=3.0* (phil-Tl. *coth(phil-Tl)-l) . /(phil-Tl. *phil-Ti) ; 

pbiZ-Tl=a*pgm*(dia_T1/2.0) .+ sqrt(exp(ke(9))*exp(ke(12)*1000./ ... 

(1.9872*y-Tl-f(: ,9))).*abs((C*y-Tl-f (: .6) ./y-Tl-f (: ,1)))/DeA+small_number); 

eta2_T1=3.O*(phi2-Tl.*coth(phi2-Ti)-i)./(phiZ_Tl.*phi2_T1); 

RCZ_Tl_f= (pgm/cO) * (exp(ke(3) *exp(ke (6)*1000. / (1.9872*y-Tl-f ( : ,9)) 1 .*Ey-Tl-f ( : ,3)) /60.0+ 

expcke (9))*exp(ke(12)*1000. /(l. 9872*y-Tl-f ( : ,911 . * (y-Tl-f ( : ,6))/60.0) ; 

* . .  

% Middle temperature 

dia-T2=([y-T2-f (: ,l)/C)*G.O/pi) .*(1.0/3.0); 

phii-TZ=a*pgm*(dia-T2/2.0) .* sqrt(exp(ke(3))*exp(ke(6)*1000./ ... 

(1.9872*y-TZ-f ( : , 9 ) )  . cabs ((C*y-T2-f ( : ,3) . /y-T2_f ( : ,111 1 /DeA+small-number) ; 

etal-T2=3.0* (phil-T2. *coth(phil-TP) -i). / (phil-TZ. *phil_TZ) ; 

phiZ-T2=a*pgrn*(dia-T2/2.0) .* sqrt(exp(ke(9))*exp(ke(12)*1000./ ... 
(1.9872*y-T2_f (: ,9)))  .*abs((C*y-T2-f (: ,6) ./y-T2-f(: ,l)))/DeA*small-number); 

eta2-T2=3.0*(phi2-TZ.*coth(phi2-T2)-1)./(phi2-T2.*phi2-T2); 

RC2-TP-f=(pgm/cO)* (exp(ks (3)) *exp(ke(6) *1000. /(I. 9872*y_T2-f ( : ,9) 1) . * (y-Tl-f ( : ,3) )/60.0+. 
exp~ke~9~~*exp~ke~l2~*1000./~1.9872*y~T2~f(:,9))).*(y~T2~f(:,6))/60.0); 

X High temperature 
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etal_T3=3.O*(phif~T3.*coth(phil_T3)-l)./(phil~TB.*phil~T3); 

phi2_T3=a*p~*(dia_T3/2.0) .*  sqrt(exp~ke(9))*exp~ke(12)*1000./ . . .  
(ln9872*y-T3-f ( : ,9)) 1 . *abs ((C*y-T3-f ( : .6)  . /y-T3-f ( : ,1)) ) /DeA+small-numbar) ; 

eta2_T3=3.O*(phi2_T3.+coth(phi2_T3)-l)./(phi2-T3.*phi2_T3); 

RCZ-T3_f=(pgm/cO)*(exp(ke(3)) *exp(ke(6) *1000. /(1.9872*y_T3-f E:, 9) 1). * (y-T3-f ( : ,3) )/60.0+. . . 
exp~ke~9~~*exp~ke~12~*1000./~1.9872*y_T3~f~:,9~~~.*~y~T3~f~:,6~~/60.0~; 

% plot the fitting curves f r o m  REM and compared with experimental data 

figure 

plot (t , yi ( : 1, ' X J  , t ,y2( : 1 1 J * ' ,t .y3( : 1 1 J +' 1 

hold on 

plot(~,RC2~Tl~f,~-~,x,RC2~T2~~,~--~,x,RC2~T3~f,~-.',~lineuidth',2.5~; 

xlabel( 'Time ) ; ylabel('Reaction rate '1 ; 

X Calculate R value 

% Input data 

X tspan: time 

% C and a: Constants, explained in the thesis 

d0:initial catalyst diameter 

epaO and c0:initial solid void fraction and 

% pgm: effect of pressure 

% DeA: effective diffusivity 

% T1 T2 T3: lou middle and high temperature 

initial concentration 

tspan=t-matrix(:.l); C=;a=;dO=; epsO=(d0)"3.0*pi/6.0*C; 

cO=(dO)"3.0*pi/6.0; pgm=; DeA=; Tl=;TZ=;T3=; 
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% Input data 

% initial value for yO-l[9], yO-2C91, y0-3C91 at low, middle and high temperature 

X The nine elements are:  

X initial value for Solid void fraction, initial value for potential active site. 

X active site, dead s i t e  for site l(multip1y by solid void fraction), 

X initial value for potential active site, active site, dead site for site 2 

(multiply by solid fraction), initial value f o r  mass fraction of monomer in solid phase 

% (multiply by solid fraction), initial value for solid temperature. 

% USE ODE solver to solve reaction engineering model at different temperatures 

options=odeset(’RelTolJ,1.Oe-6,’AbsTol’,i.Oe-8’) 

[x,y~Tl]=odel5s(~odefunc,tspan,yO~l,optloas,ke,T1~ ; 

[x,y_T23=odel5s((Dodefunc,tspan,y0_2,options,ke,T2) ; 

[x,y-T3~=odel5s(~odefunc,tspan,y0_3,options,ke,T3) ; 

%calculate isothermal effectiveness-factor for site i and 2 and then calculate the 

%reaction rate from Reaction Engineering Model 

X Low temperature 

small-number=l.Oe-20; 

dia-Tl=((y-Ti(: ,l)/C)*6.0/pi).’(l.0/3.0); 

phil_Tl=a*pgm*(dia_Tl/2.0) . *  sqrt:(exp(ke(3))*exp(ke(6)*1000./ . . .  
(1.9872*y-T1( : ,9) ) . tabs ( (C*y-TI (: ,3) . /y-T1( : ,I) ) )/DeA+small-number) ; 

eta~~T1=3.O*~phil~T1.*coth~phil~TI~-l)./(phil_Tl.*phil~Tl); 

phi2~T~=a*pgm*~dia_T1/2.0~.*sqrt~exp~ke(9))*exp(ke(12)*1000./.., 

(1.9872*y-T1. ( ; ,9) 1 )  . *abs ( (C*y-Tl(: , 6 )  . /y-T1( : ,1)) )/DeA+small-number) ; 

eta2_T1=3.O*(phi2~Tl.*coth(phi2~T1)-l)./(phi2_T1.*phiZ_Tl); 

RCZ_Tl=(pgrn/cO)*(exp(ke(3)) *exp(keC63*1000. /(1.9872*y-T1(: ,911 1 .*(y-Tl(: ,3))/60.0+. 

exp(ke (9) ) *exp(ke (12) *1000. /(l .9872*y-T1( : *9) 1). *(y-Tl( : ,6) 1/60 .O) ; 

X Riddle temperature 

dia-T2= ((y-T2 ( : ,1) /C) *6.0/pi) . (I. 0/3.0) ; 
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% High temperature 

dia_T3=((y_T3(:,1)/C)*6.O/pi).-(1,0/3.0); 

phil-T3=a*pgm*(dia_T3/2.0). *sqrt (exp(ke(3))*exp(ke(G)*lOOO./. .. 
(1.9872*y-T3(: ,9))) .*abs((C*y_T3(: ,3) ./y-T3(: ,l)))/DeA+small_number) ; 

etal_T3=3.O*~phii~T3.*coth(phil_T3)-l~./(phil_T3.*phil_T3); 

phi2_T3=a*pgm*(dia_T3/2.0) .. sqrt(exp(ke(9))*exp(ke(12)*1000./ . . .  
(1.9872*y_T3(:,9))).*abs~(C*y_T3(:,6)./y_T3(:,1)))/DeAcsmall_number); 

eta2_T3=3.0*(phi2_T3.*coth(phi2_T3)-l)./(phiZ_T3.*phi2-T3); 

RC2-T3=(pgm/cO)* (exp(ke (3) *exp(ke ( 6 )  *lOOO. / (1.9872*y-T3( . ,9) 1). . (y-T3( . ,31) /60.0+. .. 
exp~keE9~~*axp~ke~l2~*1000./~1.9872*y~T3~:,9~~~.*~y~T3~:,6))/60.0); 

% Return the reaction rates calculate f r o m  reaction engineering model 

% at different temperatures using the current ke. 

J= CRC2-Tl ,RCZ-T2, RC2-T31; 

Assign the rate constant and active energy. 

kll=ke(l) ; k21=ke(2) ; k31=ke(3) ; deltaEll=ke(4) ; deltaE21=ke(5) ; 

deltaE31=ke(6); k12=ke(7); k22=ke(8); k32=ke(9); deltaE12=ke(lOl; 

deltaE22=ke(ll) ; deltaE32=ke(12) ; 

X Input variables: 

C and a: Constants, explained in the thesis 

% p p :  Effect of pressure 

X Db: Monomer bulk diffusivity 

% DeA: Effective diffusivity 
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% Cg: Monomer concentration in the gas phase 

% rho-s: Polymer density 

% Cp: Heat capacity of polymer 

K Hr: Heat release o f  polymerization reaction 

X lam-f: Thermal conductivity 

% Sh: Sheruood number 

K Nu: Nusselt number 

dia: Particle diameter calculated from solid void fraction 

a=; C= ; pgm=; Db=; DeA=; Cg=; rhos=; 

Cp=; Hr=; lam-f=; sh=; Nu=; 

dia=((y(l)/C)*B.O/pi)-(1.0/3.0); 

K Calculate isothermal effectiveness-factor for site 1 and site 2 

small-number=l.Oe-20; 

phil=a* (dia/2.0) *sqrt (exp(k31) *exp [deltaE31*1000/(1.9872*y(9) ) ) *pgm*(abs (C*y(3) / y ( l )  1) /DeA+small-number) ; 

if (phil>=l.Oe-6) 

etal=3.0*(phil*coth~ph~l~-l~/~phil+phil~; 

else 

etal=l .O ; 

end 

phi2=a~(dia/2.O)*sqrt(exp(k32)*exp(deltaE32*1000/(1.9872*y~9~~~*pgm*~abs~C*y~6~/y~~~~~/DeA*smal~~number); 

if(phi2>=1.0e-6) 

eta2=3.0* (phi2*coth(phi2)-1) / (phi2*phi2) ; 

else 

eta2=1 . O ;  

end 

K Solid void fraction 

dydxi=C2.0*Db*sh/dial*~6.0/dia~*~Cg*y11~-y~8~1*~28.0/rhos~*3600.0; 

% First site: potential active site, active site, dead site 

X (multiply by solid void fraction) 
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% Second site: potential active site, active s i t e ,  dead site 

X (multiply by solid void fraction) 

dydxS=-exp~kl2~*exp~deltaEl2*1000.0/(1.9872*y(9)))*y(5); 

dydx6=exp(kl2)*exp~deltaE12*1000.0/(1.9872*y(9)))*y(S) ... 
-exp(k22)*exp(deltaE22*1000.0/(1.9872*y(9)))*y(6); 

dydx7=exp(k22) *expEdeltaE22*1OOO. O/(l .9872*y(9) ) ) *y (6) ; 

% Mass transfer (multiply by solid fraction) 

dydx8=(2.O*Db*sh/dia)*(6.O/dia)*(Cg*y(l)-y(8))*3600.0.. , 

-a*etal*e xp(k31)*exp~delt~3~*lOOO/~I.9872*y~9)))*pgm*y(8~*~C*~~3~/y(l)) ... 
-a*etaZ*eXp(k32) *exp(deltaE32*1000/ (1.9872*y (9) 3 )+pgm*y(8) * (Ccy(6) /y( 1) ) ; 

% Energy balance, change to zero if you don’t want to solve energy equation 

dyk9=-(2 .O*l~-f*Nu/dia)*(6.O/dia)*(y(9)-Tem)*3600 .O/(Cp*rhos) . . . 
-a*etal*Hr*exp(k31~*exp~deltaE31*1000.0/~1.9872*y(9)))*(C*y~3~/y~l~~*(y(8)/y(1~~*pgm/~Cp*rhos)... 

-a*eta2*Hr*exp~k32~*exp~deltaE32*1000.0/~1.9872*y(9)))*(C+y(6)/y(l))*(y(8~/y(l))*pgm/(Cp*rhos); 

Calculate moments of the PSD of initial catalyst and final 

polymer. [drive-moment s . m, o defunc. m, quad. m] 

clear all 

close all 

clc 

format long 

% Load PSD o f  catalyst and polymer 

load catalyst.txt; L=catalyst(:.l); f=catalyst(:,2); 



load polymer,txt; L-p=polymer(:,l); f_p=polymer(:,2); 

% Plot particle size distribution of catalyst 

plot(Lzi0000,f); ylabel(’f(L)’); xlabel(’Partic1e size L’) 

X Calculate the first six moments of catalyst PSD 

7. Calculate the probability of catalyst and final polymer 

t=cumtrapz(f) ; 

t-p=cumtrapz (f-p) ; 

x Plot the normal probability plot of catalyst and final polymer 

figure plot(L*1000O,~,’r-’,’2inevidth’,2.0~; 

ylabel(’Probabi1ity’); xlabel(’Partic1e Size L’) ; 

grid on 

hold on 

plot(L~p*10000,t~p,~g-’,’linevidth’,Z.O~; 

% Use PD algorithm to calculate the l ength  and weights of each node to 

x repxesent the catalyst PSD. 
the example use three nodes. 



% Plot the normal probability plot of catalyst calculated from QMOM 

X Input data, 

% tau: Final integration time, usually it is 10 times of average residence t i d e ,  tau-ave 

C:constant, explained in thesis 

% ke: Rate constants and active energy from three curve fitting f o r  each 

X case 

% T2: Operation temperature 

% n: Number of nodes 

% dO(n): Initial catalyst diameter for each node 

X omega(n): Weights f o r  each node for the initial catalyst PSD 

X tau-ave: Average residence time 

tau=; tspan=O:O.Ol:tau; C=; ka=[]; T2=; 

omega_l=w(l);omega_2=u(~);omega-3=~(3); 

~mega=Comega_~;omega~~;omega_~l; 

Apply chemical reaction engineering model on each node 

% First node 

dOCl)=d(l) ; 

yD~l=~(dO(l))~3.O~pi/6.O*C,(dO(i))~3.O*pi/6.O,O.O,O.O,(dO(i)~~3.O*pi/6.D,O.O,O.O,O.O,TZ~; 

options=odeset (’RelTol’ ,I .Oe-6, ’ AbsTol’ , 1.Oe-8) 
[x,yl-TZ-f] =odel5s(Oodefunc ,tspan,yO-l, options ,ke, T2) : 

% second node 

d0(2)=d(2); 

yOJ= [(do (2)) -3.O*pi/6,0*C, (do (2) )-3,0+pi/6.OI0.O,0. 0, (doc21 ~~3.0+pi/6.0,0.0,0.0,0.0 ,T23 ; 

options=odeset(’RelTol’,l.Oe-6, ’AbsTol’, i.Oe-8) 

[ x  ,y2-T2-f] =odelSs (aodefunc, tspan, yo-2, options ,ke, “2)  ; 

% Third node 
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d0(3)=d(3) ; 

y0_3=[(d0 (3)) "3.0*pi/6.0*C, (dO(3) ) ~3.0*pi/6.0,0.0,0.0. (dO(3) '3.O*pi/G. 0 ,O . 0,O. 0,O. O,T21; 

options=odeset('RelToLJ,1.0e-6, 'AbsTol', 1.0e-8) 

[x,y3_TZ-f] =odel5s (~odefunc,tspan.y0-3, options,ke, T2) ; 

Integrate three curves (length change over the time) over the tspan, and 

then multiple by the weights for each node and get the final polymer's moments, m. 

tau-ave=4.3; 

X Calculate the first six moments of the final polymer 
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Use PD algorithm to calculate the length and weights of each node to 

x represent the final polymer PSD. 
x Here we use three nodes. 

1 Plot the normal probability plot o f  polymer calculated from QMOM 

f i k e  

p1ot~x,~6.*y1~T2~f~:,1)/(pi*C)).^(1/3~*10000,’r-’,’~~neu~dth’,2~; 

hold on 

plot ( x ,  ( 6 .  *y2-T2-f (: , l)/(pi*C) 1. -(1/3) *10000, ’b--’ ,’lineuidth’,2); 

hold on 

plot(x,(6.*y3-T2-f (: ,l)/(pi*C)~.’(1/3)*10OOO,’g-.’,’linewidth’,2); 

xlabelc JAge ’ 1 ; ylabel( LJ ; axis( [I 1 ; 

figure 

pLot(x,yl-T2-f(: ,9)-T2, ’r-’,’linewidth’,2); 

hold on 

plot(x,yZ-T2-f(:,9)-T2,’b--’ , ’1 inewidth’.2); 

hold on 

plot(x,yS-T2-f(: ,9)-T2, Jg-.’, ’lineuidthJ,2); 
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figure 

plot((6.*yl~T2~f(:,f)/(pi*C)).~(l/3)*lOOOO,yl~T2~f(:,9)-T2,’r-J,Jl~neuidth’,2) ; 

hold on 

p1ot((6.*y2~T2~f(:,l)/(~i*C)).~(l/3)*lOOOO,y2~T2~f(:,9)-T2,’b--J , ’ linewidth ’ ,2) ; 

hold on 

plot((G.*y3-T2_f(: ,i)/(pi*C)) .-(i/3)*lOOOO,y3_T2_f (:,9)-T2, ’g-.I, ’linewidth’,2); 

xlabel(’L’); ylabel(’l”); 

’ 


